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Why GPUs?
● Slower increase in CPU efficiency in last years
● Higher power efficiency of GPUs (FLOPS/Watt)
● All 3 US exascale machines will have GPUs

→ prepare now!



Octopus
● Density functional theory code with 

pseudopotentials
● Real-space grid + finite differences
● Real-time time-dependent calculations
● Mainly Fortran, plus some C
● Open source: octopus-code.org



Octopus: GPU version
● Developed ~ 6 yr ago
● Written in OpenCL + wrapper for CUDA
● Interface Fortran ↔ C
● Kernels compiled during runtime



Example system
● Silver tip over crystal
● Periodic in x and y
● 312 Ag atoms
● 3200 orbitals
● 2.4 M grid points
● Compare TD runs x [Å]
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Benchmark clusters
● Cobra @ MPCDF

– CPU nodes: 40 cores/node (2x 20-core sockets)
– GPU nodes: CPU nodes + 2 Nvidia V100 GPUs
– Interconnect: Omnipath (100 Gbit/s)

● GPU machines @ MPSD
– 2x 8-core sockets
– 8 Nvidia V100 GPUs + NVLink



Comparison on cobra: CPU vs. GPU

> 4x

TCO of cobra nodes:
   GPU ~ 2.8 CPU

→ cost-efficient on 
GPUs!



Comparison on cobra: CPU vs. GPU

> 4x

64 GPUs 2560 cores

TCO of cobra nodes:
   GPU ~ 2.8 CPU

→ cost-efficient on 
GPUs!



Scaling on cobra



Implementation
● Pinned memory → faster transfer speed
● Streams → asynchronous operations
● CUDA-aware MPI → GPU-GPU communication
● Prefetching → overlap communication & 

computation



● Real-space grid for FD
● Complicated shape 

possible, e.g. molecules

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory 
Comput. (2013), 9, 10, 4360-4373
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● Real-space grid for FD
● Complicated shape 

possible, e.g. molecules
● Cache-aware mapping to 

1D array
● 1D data layout: 2 blocks

– Interior points
– Boundary/ghost points
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CUDA-aware MPI in octopus
● Timeline before (distributed mesh):

Gather Copy to CPU Operation: Inner Communication Copy to GPU Operation: Outer
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CUDA-aware MPI in octopus
● Timeline before (distributed mesh):

● With CUDA-aware MPI: communication between 
GPUs → no copies to/from GPU

● CUDA-aware MPI + streams: overlap communication & 
computation

Gather Copy to CPU Operation: Inner Communication Copy to GPU Operation: Outer

Gather Operation: Inner Communication (GPU-GPU) Operation: Outer

Gather
Operation: Inner

Communication (GPU-GPU)
Operation: Outer



CUDA-aware MPI in octopus
● Implementation:

– Get pointers to GPU memory from C
– Use c_f_pointer in Fortran to get a Fortran pointer to 

this memory
– Use this Fortran pointer in the MPI calls

● On 8 GPUs with NVLink (machine @ MPSD)
– Peer-to-peer transfer speed: ~24 GB/s
– Speed-up of ~ 2.4x  vs. normal MPI



Prefetching batches
● Timeline without prefetching:

Copy to GPU Operation Copy to CPU Copy to GPU Operation Copy to CPU

Batch 1 Batch 2

...



Prefetching batches
● Timeline without prefetching:

● Timeline with prefetching:

Copy to GPU Operation Copy to CPU Copy to GPU Operation Copy to CPU

Batch 1 Batch 2

...

Copy to GPU Operation Copy to CPUBatch 1

Copy to GPU Operation Copy to CPUBatch 2

...
Copy to GPU Operation Copy to CPUBatch 3

→ for TD runs: speed-up of 1.8x
(only used if states do not fit in GPU memory)



Summary
● Octopus more efficient on GPUs
● Improvements based on

– Pinned memory
– Streams
– CUDA-aware MPI
– Prefetching batches

● Outlook:
– Port more parts of the code
– Improve scaling

sebastian.ohlmann@mpcdf.mpg.de
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Orbital 1

Mesh index

Orbital 2
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Packed layout
Orbital index
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Data layout II: batches
● Aggregate several 

orbitals into one 
batch

● Operations done 
over batches

● 2 layouts:
– Unpacked
– Packed → 

vectorization, GPUs



Batch handling
● Batch can have 3 states:

CPU unpacked CPU packed GPU packed

● Transitions before:
CPU unpacked

CPU packed GPU packed

→ always involves transposition



Batch handling
● Batch can have 3 states:

CPU unpacked CPU packed GPU packed

● Transitions before: ● Transitions now:
CPU unpacked

CPU packed GPU packed

→ always involves transposition

CPU unpacked

CPU packed GPU packed

→ simple copy to GPU



Pinned memory
● Normal allocations: pageable memory
● Transfers to GPU: pinned memory needed

→ faster transfer
● Solution:

– Allocate pinned memory in C (CUDA call)
– Use c_f_pointer in Fortran to use this memory

● Transfer speed on PCIe 3: ~12 GB/s vs. ~5 GB/s



Streams
● Default: CUDA operations are blocking
● Streams needed to overlap operations
● Also needed for CUDA-aware MPI
● 32 Streams are initialized in the C layer
● Selection from Fortran layer
● Usage example: asynchronously launch norm 

kernels with strides



CUDA-aware MPI
● Extension of MPI, available for some flavours (OpenMPI, 

MPICH, MVAPICH, …)
● Requires compatible low-level drivers
● Usage:

– Pass GPU pointers to MPI calls
– MPI library can directly access the GPU memory

● Advantages:
– Peer-to-peer copies on the same node (even better with NVLink)
– Less latency for inter-node communication



Overlap communication & 
computation

● 2 ways of running octopus on GPUs:
– If enough GPU memory → store all batches on GPU
– Otherwise → copy batch to GPU, operate, copy back

● For second way:
– Overlap of communication & computation possible
– Use asynchronous prefetching on different stream



Prefetching batches
● Advantage:

– Hide copy latency, except for first & last copy
● Disadvantages:

– Needs memory for 3 batches
– Does not overlap completely if operation involves 

copies to/from the GPU
● For TD runs: speed-up of 1.8x



Timing data (Ag tip on cobra)
Nodes 4 8 16 32 64

CPU Time [s] 22.9 11.3 6.34 3.65 2.77

Speedup 1 2.0 3.6 6.3 8.3

GPU Time [s] 4.64 2.65 1.59 1.23

Speedup 1 1.8 2.9 3.8

GPU 
ParDomain=2

Time [s] 12.76 6.55 3.45 1.86

Speedup 1 2.0 3.7 6.9

GPU 
StatesPack=no

Time [s] 5.26



Timing data (Ag tip on MPSD machine)
Number of GPUs 1 2 4 8

GPU Time [s] 4.44

GPU 
ParDomain=2

Time [s] 7.42

GPU 
ParDomain=2 
normal MPI

Time [s] 17.9

GPU 
StatesPack=no

Time [s] 32.3 27.9 14.7 7.95

Speedup 1 1.16 2.2 4.1

GPU 
StatesPack=no 
ParDomain=2

Time [s] 28 24 14

Speedup 1 1.16 2
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