
Octopus:
Recent advances in
GPU development
Sebastian Ohlmann
Max Planck Computing and Data Facility, Garching
In collaboration with H. Appel, M. Lüders, M. Oliveira, N. Tancogne-Dejean

APS March meeting, 2.3.2020

Why GPUs?
● Slower increase in CPU efficiency in last years
● Higher power efficiency of GPUs (FLOPS/Watt)
● All 3 US exascale machines will have GPUs

→ prepare now!

Octopus
● Density functional theory code with

pseudopotentials
● Real-space grid + finite differences
● Real-time time-dependent calculations
● Mainly Fortran, plus some C
● Open source: octopus-code.org

Octopus: GPU version
● Developed ~ 6 yr ago
● Written in OpenCL + wrapper for CUDA
● Interface Fortran ↔ C
● Kernels compiled during runtime

Example system
● Silver tip over crystal
● Periodic in x and y
● 312 Ag atoms
● 3200 orbitals
● 2.4 M grid points
● Compare TD runs x [Å]

10
5

0
5

10

y [Å
]

10
5

0
5

10

z [
Å]

10

5

0

5

10

Benchmark clusters
● Cobra @ MPCDF

– CPU nodes: 40 cores/node (2x 20-core sockets)
– GPU nodes: CPU nodes + 2 Nvidia V100 GPUs
– Interconnect: Omnipath (100 Gbit/s)

● GPU machines @ MPSD
– 2x 8-core sockets
– 8 Nvidia V100 GPUs + NVLink

Comparison on cobra: CPU vs. GPU

> 4x

TCO of cobra nodes:
 GPU ~ 2.8 CPU

→ cost-efficient on
GPUs!

Comparison on cobra: CPU vs. GPU

> 4x

64 GPUs 2560 cores

TCO of cobra nodes:
 GPU ~ 2.8 CPU

→ cost-efficient on
GPUs!

Scaling on cobra

Implementation
● Pinned memory → faster transfer speed
● Streams → asynchronous operations
● CUDA-aware MPI → GPU-GPU communication
● Prefetching → overlap communication &

computation

● Real-space grid for FD
● Complicated shape

possible, e.g. molecules

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory
Comput. (2013), 9, 10, 4360-4373

Data layout

● Real-space grid for FD
● Complicated shape

possible, e.g. molecules
● Cache-aware mapping to

1D array

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory
Comput. (2013), 9, 10, 4360-4373

Data layout

● Real-space grid for FD
● Complicated shape

possible, e.g. molecules
● Cache-aware mapping to

1D array
● 1D data layout: 2 blocks

– Interior points
– Boundary/ghost points

Interior Boundary

Interior

Boundary

Boundary

B
ou

nd
ar

y B
oundary

Data layout

CUDA-aware MPI in octopus
● Timeline before (distributed mesh):

Gather Copy to CPU Operation: Inner Communication Copy to GPU Operation: Outer

CUDA-aware MPI in octopus
● Timeline before (distributed mesh):

● With CUDA-aware MPI: communication between
GPUs → no copies to/from GPU

Gather Copy to CPU Operation: Inner Communication Copy to GPU Operation: Outer

Gather Operation: Inner Communication (GPU-GPU) Operation: Outer

CUDA-aware MPI in octopus
● Timeline before (distributed mesh):

● With CUDA-aware MPI: communication between
GPUs → no copies to/from GPU

● CUDA-aware MPI + streams: overlap communication &
computation

Gather Copy to CPU Operation: Inner Communication Copy to GPU Operation: Outer

Gather Operation: Inner Communication (GPU-GPU) Operation: Outer

Gather
Operation: Inner

Communication (GPU-GPU)
Operation: Outer

CUDA-aware MPI in octopus
● Implementation:

– Get pointers to GPU memory from C
– Use c_f_pointer in Fortran to get a Fortran pointer to

this memory
– Use this Fortran pointer in the MPI calls

● On 8 GPUs with NVLink (machine @ MPSD)
– Peer-to-peer transfer speed: ~24 GB/s
– Speed-up of ~ 2.4x vs. normal MPI

Prefetching batches
● Timeline without prefetching:

Copy to GPU Operation Copy to CPU Copy to GPU Operation Copy to CPU

Batch 1 Batch 2

...

Prefetching batches
● Timeline without prefetching:

● Timeline with prefetching:

Copy to GPU Operation Copy to CPU Copy to GPU Operation Copy to CPU

Batch 1 Batch 2

...

Copy to GPU Operation Copy to CPUBatch 1

Copy to GPU Operation Copy to CPUBatch 2

...
Copy to GPU Operation Copy to CPUBatch 3

→ for TD runs: speed-up of 1.8x
(only used if states do not fit in GPU memory)

Summary
● Octopus more efficient on GPUs
● Improvements based on

– Pinned memory
– Streams
– CUDA-aware MPI
– Prefetching batches

● Outlook:
– Port more parts of the code
– Improve scaling

sebastian.ohlmann@mpcdf.mpg.de

Backup slides

Orbital 1

Mesh index

Orbital 2

...1 2 3

...1 2 3

...1 2 3

...1 2 3

Orbital 3

Orbital 4

Unpacked layout

M
es

h
in

de
x

Packed layout
Orbital index

1 1 1 1

2 2 2 2

3 3 3 3

...

Data layout II: batches
● Aggregate several

orbitals into one
batch

● Operations done
over batches

● 2 layouts:
– Unpacked
– Packed →

vectorization, GPUs

Batch handling
● Batch can have 3 states:

CPU unpacked CPU packed GPU packed

● Transitions before:
CPU unpacked

CPU packed GPU packed

→ always involves transposition

Batch handling
● Batch can have 3 states:

CPU unpacked CPU packed GPU packed

● Transitions before: ● Transitions now:
CPU unpacked

CPU packed GPU packed

→ always involves transposition

CPU unpacked

CPU packed GPU packed

→ simple copy to GPU

Pinned memory
● Normal allocations: pageable memory
● Transfers to GPU: pinned memory needed

→ faster transfer
● Solution:

– Allocate pinned memory in C (CUDA call)
– Use c_f_pointer in Fortran to use this memory

● Transfer speed on PCIe 3: ~12 GB/s vs. ~5 GB/s

Streams
● Default: CUDA operations are blocking
● Streams needed to overlap operations
● Also needed for CUDA-aware MPI
● 32 Streams are initialized in the C layer
● Selection from Fortran layer
● Usage example: asynchronously launch norm

kernels with strides

CUDA-aware MPI
● Extension of MPI, available for some flavours (OpenMPI,

MPICH, MVAPICH, …)
● Requires compatible low-level drivers
● Usage:

– Pass GPU pointers to MPI calls
– MPI library can directly access the GPU memory

● Advantages:
– Peer-to-peer copies on the same node (even better with NVLink)
– Less latency for inter-node communication

Overlap communication &
computation

● 2 ways of running octopus on GPUs:
– If enough GPU memory → store all batches on GPU
– Otherwise → copy batch to GPU, operate, copy back

● For second way:
– Overlap of communication & computation possible
– Use asynchronous prefetching on different stream

Prefetching batches
● Advantage:

– Hide copy latency, except for first & last copy
● Disadvantages:

– Needs memory for 3 batches
– Does not overlap completely if operation involves

copies to/from the GPU
● For TD runs: speed-up of 1.8x

Timing data (Ag tip on cobra)
Nodes 4 8 16 32 64

CPU Time [s] 22.9 11.3 6.34 3.65 2.77

Speedup 1 2.0 3.6 6.3 8.3

GPU Time [s] 4.64 2.65 1.59 1.23

Speedup 1 1.8 2.9 3.8

GPU
ParDomain=2

Time [s] 12.76 6.55 3.45 1.86

Speedup 1 2.0 3.7 6.9

GPU
StatesPack=no

Time [s] 5.26

Timing data (Ag tip on MPSD machine)
Number of GPUs 1 2 4 8

GPU Time [s] 4.44

GPU
ParDomain=2

Time [s] 7.42

GPU
ParDomain=2
normal MPI

Time [s] 17.9

GPU
StatesPack=no

Time [s] 32.3 27.9 14.7 7.95

Speedup 1 1.16 2.2 4.1

GPU
StatesPack=no
ParDomain=2

Time [s] 28 24 14

Speedup 1 1.16 2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	page7 (1)
	page7 (2)
	Slide 9
	Slide 10
	page10 (1)
	page10 (2)
	page10 (3)
	page11 (1)
	page11 (2)
	page11 (3)
	Slide 17
	page13 (1)
	page13 (2)
	Slide 20
	Slide 21
	Slide 22
	page17 (1)
	page17 (2)
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

