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1 Introduction

1.1 History of Supernova Observation

Ever since the dawn of mankind, the dark night sky with its sparkling stars has fascinated
humans. For a long time, these stars had been believed to be pinned immovably to
some kind of heavenly sphere which rotates throughout the night. And in front of this
immutable background, the sun and the planets followed their tracks according to some
complex but nevertheless invariant law. How much more fascinating must have been
transient phenomena, breaking the eternal steadiness of the celestial sphere!

One of the first observations of these phenomena recorded in newer times dates back
to the year 1006. Astronomers mainly in China and Japan witnessed a new star emerging
in the sky, being visible over several years before fainting again. This event is supposed
to be the brightest transient event in recorded history—apart from comets. Several
centuries later, in 1572, a very bright new star appeared in the constellation Cassiopeia,
challenging in brightness even Venus. This event was documented very well by Tycho
Brahe in his book “De nova stella” (Brahe, 1573), describing the appearance of a “new
star”. This coined the term nova for these bright transient phenomena. Many more of
these and similar events were observed in the following centuries, raising the need for
a better terminology. Thus, the term supernova (SN) was used first by W. Baade and
F. Zwicky in the 1930s to classify certain transient events, comprising the ones from
1054 and 1572. An image of the supernova remnant left behind by Tycho’s supernova

Figure 1.1 | Tycho’s supernova (SN 1572).
This image combines data from the space
observatories Spitzer in the infrared part
of the spectrum and Chandra in the X-
ray part, as well as optical data from
the Calar Alto observatory in Spain.
Courtesy NASA/JPL-Caltech/CXC/Calar
Alto, O. Krause (Max-Planck Institute for
Astronomy).
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1 Introduction

combined from data from several modern telescopes (Spitzer, Chandra, Calar Alto)
reveals a very complex structure (Figure 1.1). For more information on the history
of supernovae see Green & Stephenson (2003). They give an overview over historical
supernovae—including SN 1006 and SN 1572—and compile historical records from
various sources.

The interest in supernovae has persisted to the present, and the development of new
telescopes and instruments has allowed us to improve our knowledge of these fascinating
objects more and more. As supernovae belong to the brightest and most energetic events
in the Universe, modern telescopes can observe them out to the edge of the Universe.
Albeit a large number of supernovae are observed nowadays, their physical mechanism
is still not known in detail. It is known, however, that a variety of different kinds of
supernovae exist and that they all are explosions marking the death of a star—contrary
to what their name might suggest.

In order to elucidate the nature of supernovae, the quest of classifying supernovae
according to their light curves and spectra began in the 1930s. This was improved over
the years, and finally led to the insight that two physically distinct mechanisms may
explain the diversity of supernovae: thermonuclear explosions of white dwarfs (WDs)
and core collapses of massive stars.

This work aims at improving numerical modeling of thermonuclear explosions. The
following sections give an introduction to SNe focussing on thermonuclear events.

1.2 Observations of Supernovae

Supernovae occur somewhere in the Universe far away from our solar system. Therefore,
the only information we can gather from these events is electromagnetic radiation
and—in the case of nearby core collapse supernovae—neutrinos and cosmic rays from
remnants. Since we cannot gain information about these objects by experimenting with
them on Earth, we are restricted to observations as the acid test of any model we build
to explain them.

Observations of supernovae, like all astronomical observations in the optical and
adjacent bands, rely on two methods: spectroscopy and photometry. Spectroscopy uses
a spectrometer in order to resolve the flux of the emitted electromagnetic radiation
as a function of the wavelength of the radiation and thus yields spectra. Photometry
measures the total emitted flux in images taken with or without a filter. Multi-band
photometry is equivalent to spectroscopy with very low resolution and yields fluxes
which are averaged over larger parts of the electromagnetic spectrum and which are
called light curves. Spectroscopy yields more detailed information about the observed
object than photometry. One advantage of photometry on the other side is that it is
also possible for rather faint objects, where spectroscopy cannot be done. For objects
radiating approximately a thermal spectrum, as e.g. stars, photometry can be used to de-
termine colors and consequently the surface temperature. The most common system for
photometry is the system of UBVRI passbands (Bessell, 1990), where for each passband
a certain filter is applied, thus restricting the radiation to the corresponding band.
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1.2 Observations of Supernovae

1.2.1 Classification

The spectral classification of supernovae uses photometric and spectroscopic properties
of the corresponding objects. The discussion here follows the works of Filippenko (1997)
and Leibundgut (2000). A summary of the classification scheme is given in Figure 1.2,
which shows the most common supernova types. As the classification of supernovae
evolved historically from photometric and spectroscopic properties, it does not reflect
the main differentiation with regard to the underlying physical mechanisms, i.e. the
distinction of thermonuclear and core collapse supernovae.

The basic supernova classes are Type I and Type II supernovae. They are distinguished
by the presence of hydrogen lines: Type II supernovae (SNe II) are defined by the
presence, Type I supernovae (SNe I) by the absence of H lines in their optical spectra,
usually at maximum brightness. SNe II can be further divided into the subclasses SN IIP
(“plateau”) and SN IIL (“linear”), according to the shape of their light curve, as well
as SN IIn and SN IIb. The class of SNe I consists of the subclasses SN Ia, SN Ib and
SN Ic. SNe Ia are defined by showing strong Si II absorption lines near maximum light,
whereas SNe Ib and Ic do not show these. SNe Ib are further distinguished from SNe Ic
by the presence of moderately strong He I lines. As Li et al. (2011) found out, 24% of all
supernovae are Type Ia supernovae, 57% Type II supernovae and 19% Type Ib and Ic
supernovae.

The observationally motivated classification in the end reflects the physical explosion
mechanism at least in parts: SNe Ia are believed to be explained by thermonuclear explo-

H lines

Si II lines

SN Ia

yes

He I lines

SN Ib

yes

SN Ic

no

no

no

SN II

SN IIP SN IIL SN IIn SN IIb

yes

Figure 1.2 | Spectroscopical classification scheme of supernovae. The green, rounded boxes
show the element lines and a subsequent classification decision depends on the presence of
these lines in the spectra (usually at maximum brightness). The blue box shows the SN type
associated with thermonuclear explosions. The red boxes display SN types associated with a
core collapse mechanism. This classification follows Filippenko (1997). For explanations of the
different types see text.
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1 Introduction

sions of carbon/oxygen white dwarfs in binary systems, whereas all other spectroscopic
classes are believed to be the result of a core collapse of a massive star.

1.2.2 Spectroscopic and Photometric Properties

The spectroscopic and photometric properties of supernovae are extensively discussed
by Filippenko (1997). The particular properties of SNe Ia are further discussed in
Hillebrandt & Niemeyer (2000) and Leibundgut (2000).

The early-time spectra of SNe, taken in the “photospheric phase”, are character-
ized by broad lines, i.e. the ejecta move at high velocities up to several 10 000 km/s.
The characteristic lines show up in the form of P-Cygni profiles for all types, except
for emission-dominated features. A P-Cygni profile arises when absorbing—and re-
emitting—material moves outwards, thereby enclosing an optically thick, radiating core.
It consists of two main contributions: a blue-shifted, broadened absorption feature and a
wide (re-)emission component at the rest-frame wavelength. The emission component is
caused by all material moving outwards and is thus subject to Doppler line broadening.
The absorption feature, however, is due to the material in front of the opaque core,
moving towards the observer and thus causing a blue-shifted absorption feature, which
is superimposed on the emission feature. The material behind the optically thick core
does not contribute, since it is obscured by the core.

Late-time spectra of SNe taken in the “nebular phase”, when the core has become
transparent, show broad emission lines. In SNe Ia, these are mostly due to iron group
elements (IGE; e.g. Fe, Co), whereas SNe Ib and Ic display emission lines mostly of
intermediate mass elements (IME; e.g. O, Ca) and He (for SNe Ib). The late-time spectra
of SNe II form a very heterogeneous class.

Type Ia Supernovae

As Type Ia supernovae belong to the class of SNe I, they do not show any H lines in
their spectra at any time. Their characteristic spectroscopic feature in early-time spectra
is a deep and wide absorption line at around 6150 Å, which is the blue-shifted part
of the P-Cygni profile of the Si II lines at rest wavelengths of 6347 Å and 6371 Å. This
feature distinguishes SNe Ia from SNe Ib and Ic. The early-time spectra in general are
characterized by lines from various IME (O, Mg, Si, S, Ca) as well as IGE (e.g. Fe, Ni, Cr,
Ti, Co) in the bluer part of the spectrum. As the ejecta expand and the density decreases,
the opacity decreases as well and the photosphere—the outer edge of the optically thick
core—moves inward. About two weeks after maximum brightness, Fe II lines dominate
the spectrum. This means that iron is abundant in the inner core, which is now revealed
in the spectrum. Late-time spectra in the nebular phase, which the SN enters after a long
transitional phase of about 100 d, are dominated by emission lines from Fe and Co.

The light curves of “normal” SNe Ia show only limited variability (Branch et al.,
1993). As found by Riess et al. (1999), the rise time from explosion to the maximum of
brightness in the B band is 19.5 d± 0.2 d for a typical Type Ia supernova. A typical SN Ia
is characterized by a peak magnitude in B band of about −19.5 mag and a decline in

4



1.2 Observations of Supernovae

magnitude from B band maximum to 15 days afterwards of ∆m15(B) ≈ 1.1 mag (Riess
et al., 1999). In the first month after B band maximum, the light curve usually declines
by about three magnitudes. After the first month, the decline continues at a rate of
about one magnitude per month (Hillebrandt & Niemeyer, 2000). In the near infrared,
especially in the I band and at redder wavelengths, a second maximum appears for
normal SNe Ia between 21 and 30 days after B band maximum (Leibundgut, 2000).

The light curve—and the electromagnetic emission in general—is powered by the
radioactive decay of 56Ni and its daughter nucleus 56Co (Truran et al., 1967; Colgate &
McKee, 1969). Thus, the amount of 56Ni produced in a SN Ia through thermonuclear
burning determines the peak luminosity.

Different characteristics of the light curves of normal SNe Ia correlate with each other
(for an overview, see Branch, 1998). Most prominently, this shows up in the “Phillips
relation” (Phillips, 1993) between the maximum magnitude in B, V or I band and the
decline in B band ∆m15(B). In conjunction with other correlations, normal SNe Ia seem
to form a one-parameter family ranging from stronger explosions with high luminosities
and slow light curves to weaker explosions with low luminosities and fast light curves
(Branch, 1998). From the light curve width or from ∆m15(B) the peak magnitude of a SN
Ia can be estimated. This allows to use them as distance indicators in cosmology (Riess
et al., 1998; Schmidt et al., 1998; Perlmutter et al., 1999).

Although the class of Type Ia supernovae is rather homogeneous, compared with other
classes, only 70% of all SNe Ia are classified as normal (Li et al., 2011), whereas the other
SNe Ia consist of peculiar objects and is further sub-classified (Li et al., 2011): 15% are
1991bg-like objects, 9% are 1991T-like and 5% are 2002cx-like. SNe Ia similar to 1991bg
are sub-luminous, the colors are redder at maximum brightness, but slightly bluer at late
times and the second maximum in the I band is missing (Filippenko, 1997). 1991T-like
SNe, however, are super-luminous objects lacking the Si II lines in pre-maximum spectra
and showing low IME velocities (Filippenko, 1997). 2002cx-like SNe are sub-luminous
and miss the second maximum in the I band, similar to 1991bg-like objects, but show
1991T-like pre-maximum spectra and have very low line velocities (Phillips et al., 2007).

Type Ib and Ic Supernovae

Type Ib and Ic supernovae do not show signs of hydrogen in their spectra and do not
show the prominent Si II absorption line as it is characteristic for SNe Ia. The general
light curves are similar to SNe Ia, but the maximum brightness is typically 1.5 mag
fainter than normal SNe Ia and the colors are reddish (Filippenko, 1997). Li et al. (2011)
give fractions of 21% for SNe Ib, 54% for SNe Ic and 25% for peculiar objects, named
Ibc-pec.

Type II Supernovae

All SNe II show hydrogen lines in their spectra, although with a varying strength and
profile of the Hα line (Filippenko, 1997). Apart from that, the early-time as well as
the late-time spectra constitute a very heterogeneous class. The main two subclasses
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1 Introduction

characterize the shape of the light curves: the light curve of SNe II-L (“linear”) is similar
to SN I light curves, whereas SNe II-P (“plateau”) show a plateau in the light curve after
maximum brightness (Filippenko, 1997). Type IIn supernovae show narrow components
of the Hα emission lines and seem to be bluer at early times (Filippenko, 1997). The
last subclass, Type IIb supernovae, is linked to Type Ib supernovae: at early times, the
spectra show Hα lines, as do SNe II, but at late times the spectra gradually turn into SNe
Ib, being dominated by He (and also IME/IGE) features.

The most common subclass of Type II supernovae are SNe II-P with 70%. The other
subclasses are of similar frequencies, namely SNe II-L with 10%, SNe IIb with 12% and
SNe IIn with 9% (Li et al., 2011).

1.3 SN Ia Progenitor Systems and Explosion Models

Despite the ongoing efforts in the past years, no progenitor system of a SN Ia has been
unambiguously identified by now. In order to shed light on their nature, results from
stellar evolution models have to be combined with observations. Since the progenitors
have never been identified observationally, all progenitor models have to be considered
and the ones not compatible with observations or physical principles have to be ruled
out. Unfortunately, in the case of SNe Ia this procedure has not singled out one specific
progenitor system but yields several possible models. The key result is that the progenitor
systems incorporate white dwarfs consisting of carbon and oxygen in interacting binary
systems. The different channels are the double degenerate (DD) scenario, where the
binary system consists of two carbon/oxygen white dwarfs, and the single degenerate
(SD) scenario, where the companion star of the carbon/oxygen WD is a non-degenerate
star—e.g. a main sequence star or a red giant. Good overviews of how this result was
reached are given in Leibundgut (2000) and Hillebrandt & Niemeyer (2000).

One fact constraining the nature of the progenitor system comes from the short rise
time and peak phase, indicating a compact object. The fact that neither hydrogen nor
helium—the two most abundant elements in the universe—are present in the spectra
hints to highly evolved objects. This is also supported by the occurrence of SNe Ia in
elliptical galaxies with their older stellar population (Leibundgut, 2000). Long-lived
compact objects are usually stable and the violent event of a SN Ia indicates the presence
of a companion star, triggering the supernova. This suggests an interacting binary system
as progenitor system. As already mentioned in Section 1.2.2, the light curve of SNe Ia is
powered by the radioactive decay of 56Ni and its daughter nucleus. Thus, nuclear fusion
provides the energy source for these events—opposed to SNe II, which are powered by
the release of gravitational energy. All these reasons suggest that a Type Ia supernova
is a thermonuclear explosion of a white dwarf. The composition of this WD can be He,
C/O and O/Ne. He WDs can be excluded because of their explosion characteristics
(see Woosley et al., 1986, and references therein). O/Ne WDs, on the other hand, are
supposed to undergo a collapse to a neutron star when they reach high enough masses
rather than an explosion due to electron capture reactions (Nomoto & Kondo, 1991).
This finally leaves carbon/oxygen white dwarfs as the favored progenitors for SNe Ia.
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1.3 SN Ia Progenitor Systems and Explosion Models

1.3.1 Progenitor Channels

As noted above, the two main scenarios for SN Ia progenitor systems are the single
degenerate (SD) and the double degenerate (DD) scenario. These scenarios include
several explosion channels which can be distinguished by the mass of the WDs and
the burning modes causing the explosion. A WD consists of a plasma of ionized
nuclei and degenerate electrons and is stabilized against gravity by the degeneracy
pressure of the electrons. This yields an upper limit for the mass of a stable WD, the
Chandrasekhar mass (Chandrasekhar, 1931), which is used to classify white dwarfs into
sub-Chandrasekhar, Chandrasekhar and “super-Chandrasekhar” white dwarfs. The
two distinct burning modes which can be present in these explosions are subsonic
deflagrations and supersonic detonations (see Section 2.3 for more details on this). Now
the combination of the burning modes and initial masses yields a wide range of different
explosion scenarios with different outcomes.

Single Degenerate Scenario

In the single degenerate scenario, the companion star of the exploding white dwarf is
either a main sequence star or a red giant. Through mass overflow from this companion
to the WD, H or He is transferred to the surface of the WD, where the material is steadily
burned if the conditions are suitable (Leibundgut, 2000).

In the Chandrasekhar mass model, it is assumed that the accreted material burns to carbon
and oxygen, increasing the mass of the WD until nearly reaching the Chandrasekhar
mass. Shortly before this mass is reached, the rise in density in the core of the WD
renders carbon fusion possible. A simmering phase follows, where the heat from the
carbon burning can be transferred outwards by convection processes. But when a critical
temperature is reached, a thermonuclear runaway can occur: because of the degeneracy
of the electrons, a further rise in temperature is not followed by a rise in pressure, thus
leading to the formation of hot spots. Now, due to the sensitivity of the reaction rates on
temperature, a runaway may occur in these hot spots.

Depending on the type of burning which is establishing in the course of the explosion,
different models have been proposed:

• The pure detonation model assumes that a detonation wave is initiated near the
core of the WD. The initial density in Chandrasekhar mass models is on the order
of 109 g/cm3 and hydrostatic models show a steep density gradient only at the
outer edge of the WD. As the density threshold for burning to nuclear statistical
equilibrium (NSE) lies at around 107 g/cm3 (see also the results in Section 4.1.1),
most of the WD is burned to 56Ni yielding 56Ni masses of ∼ 1.3 M�. Since
this is too bright even for the super-luminous class of 1991T-like SNe1, the pure
detonation model cannot explain SNe Ia. Moreover, the amount of intermediate
mass elements produced in such a pure detonation is insufficient to explain the
spectra (Hillebrandt & Niemeyer, 2000).

1SN1991T, e.g., produced 1.1 M� of 56Ni according to Leibundgut (2000).
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1 Introduction

• The pure deflagration model assumes a deflagration being ignited near the core of
the WD. First, laminar burning takes place. This in turn leads to the formation of
hydrodynamical instabilities producing turbulent motion, which greatly enhances
the nuclear burning (see Section 2.3). Since the burning propagates subsonically,
the material ahead of the deflagration front is pre-expanded. Thus, a significant
part of the material can be burned at lower densities, thereby producing the IME
missing in the pure detonation scenario.

Parametrized one-dimensional models were very successful in explaining SNe Ia
spectra and light curves, especially the W7 model by Nomoto et al. (1984) and
Iwamoto et al. (1999). The key for the success of this model was to assume that
the propagation speed of the deflagration front is enhanced by turbulence up
to about 30% of the sound speed (Hillebrandt & Niemeyer, 2000). More recent
multi-dimensional models (e.g. Reinecke et al., 2002b; Röpke et al., 2006a) with a
focus on first principles calculations have shown that deflagrations can provide
enough explosion energy to unbind the star. Despite this, however, the mass of 56Ni
produced during the explosion is too small with a maximum of roughly 0.5 M� of
56Ni (Röpke et al., 2006a) in order to explain normal SNe Ia. Moreover, a strong
mixing of the explosion products is predicted due to the turbulent burning, in
contradiction to the layered structure indicated by observations.

A very recent study by Kromer et al. (2012) with refined numerical methods
indicates that deflagration models could explain the peculiar subtype of 2002cx-
like SNe Ia.

• The delayed detonation model is inspired by terrestrial experiments showing that a
deflagration may under certain conditions trigger a detonation (e.g. Clavin, 2004).
Now the assumption is that such a deflagration-detonation transition (DDT) may
also occur in the context of thermonuclear flames (Blinnikov & Khokhlov, 1986;
Khokhlov, 1991a). Opposed to the pure detonation model, the delayed detonation
has the advantage that the detonation burns the material pre-expanded by the
deflagration. A transition density was used as a fitting parameter in early one
dimensional models and was found to be of the order of 107 g/cm3 (Höflich &
Khokhlov, 1996; Iwamoto et al., 1999). Just slightly below this transition density
lies the density range, where IME are produced in detonations (Section 4.1.1).
Hence, a substantial amount of IME is produced in a layer nearly surrounding the
deflagration ashes.

This behaviour has also been found in a study by Röpke & Niemeyer (2007),
where three dimensional simulations were conducted using a fixed DDT criterion
based on density and the effective Karlovitz number (the same as in Golombek &
Niemeyer, 2005) in the spirit of a first principles simulation. They found that the
models they computed are all in the range of normal SNe Ia concerning the mass of
produced IGE and IME. In a very recent survey by Seitenzahl et al. (2012), fourteen
three dimensional simulations of delayed detonation models are presented with
detailed nucleosynthetic yields. They employ a more elaborate DDT criterion
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1.3 SN Ia Progenitor Systems and Explosion Models

involving the velocity distribution generated by the deflagration. Their models
span the range of 56Ni masses needed for explaining the natural luminosity range
of normal SNe Ia. Thus, the delayed detonation model seems to explain normal
SNe Ia quite well, yet synthetic spectra should be computed and compared with
observed spectra, as already done in two dimensions by Kasen et al. (2009) and
Blondin et al. (2011).

The delayed detonation model of Chandrasekhar mass white dwarfs is also ex-
amined in this diploma thesis, where the models from Seitenzahl et al. (2012) are
improved by taking into account a more realistic progenitor composition.

• Another model which combines an initial deflagration phase with a detonation
later on is the pulsational delayed detonation model, which was investigated by Arnett
& Livne (1994a,b). The basic assumption is that the deflagration fails to unbind the
star, resulting in a pulsation. During the contraction phase, the material in the core
heats up and finally ignites a detonation wave.

• The gravitationally confined detonation model (Plewa et al., 2004; Jordan et al., 2008)
also combines an initial deflagration with a detonation in a pre-expanded medium.
In this model, the deflagration starts off-center, rises to the surface of the star and
propagates around the star to converge at the antipodal point, where a detonation
is initiated. The three dimensional models presented in Jordan et al. (2008) produce
rather large amounts of 56Ni and only small amounts of IME and could thus only
be an explanation for high-luminosity SNe Ia.

This model has been refined to the “pulsationally-assisted” gravitationally confined
detonation model (Jordan et al., 2012), which leads to a greater pre-expansion of
the WD and thus to lower 56Ni masses. Here, the deflagration is stronger than in
the previous model, thus releasing more energy in the early phase leading to a
greater pre-expansion. Then the detonation cannot be initiated by the deflagration
ashes converging in the antipodal point of the surface, but a pulsation of the star
drives the ignition of a detonation, similar to the pulsational delayed detonation
mechanism. Three dimensional simulations by Jordan et al. (2012) yield lower 56Ni
masses compatible with normal SNe Ia. It is, however unclear, if the amounts
of IGE and IME produced at the surface by the initial deflagration is compatible
with observations. To further judge the validity of this model, radiative transfer
calculations should be done in order to compare the synthetic spectra and light
curves to observables.

Apart from these Chandrasekhar mass models, models exist where a sub-Chandrasekhar
mass WD explodes. They do not reach the critical mass by accretion, because an external
event triggers the explosion before. On the surface of the WD, a He layer is accreted by
mass overflow from the companion star. When this layer is massive enough, a detonation
can be ignited in the He shell. This detonation surrounds the WD and the shock waves
emitted from the detonation may converge in the core of the WD, thereby causing a
secondary detonation of the carbon/oxygen core. Thus, this scenario is also called double
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detonation sub-Chandrasekhar mass model (Nomoto, 1980; Iben & Tutukov, 1984). The
secondary detonation of the C/O core can alternatively also be ignited directly at the
edge of the core. These double detonation models have been studied (for references, see
Hillebrandt & Niemeyer, 2000), but face severe problems: The detonation of the outer
He shell produces a significant amount of 56Ni in the outer layers at higher velocities
than the IME and inner iron and nickel core. This clearly contradicts the early-time and
maximum brightness spectra, thus disfavoring this model.

Despite this, recent multi dimensional simulations have shown that the mechanism of
triggering a secondary detonation near the center of the core through converging shock
waves is rather robust (Fink et al., 2007), although large amounts of 56Ni are produced
in the outer layers. This restriction may be alleviated by the results of Fink et al. (2010),
as they find that lower He shell masses, such as predicted in the AM CVn models of
Shen et al. (2010), may trigger a secondary detonation as was thought necessary before,
especially for higher mass WDs. Although less 56Ni is produced in the outer layers, still
substantial amounts of other IGE, as for example Cr and Ti, are synthesized, leading
to inconsistencies of the synthetic spectra with the observed spectra (see the radiative
transfer calulations in Kromer et al., 2010). A better agreement of the spectra with
observations can be reached if the He shell is enriched by carbon through some mixing
process (Kromer et al., 2010). If the effects of the He shell are neglected alltogether,
as done in Sim et al. (2010) for explosions of pure C/O sub-Chandrasekhar WDs, the
resulting models can reproduce the characteristics of the range of normal SNe Ia. Thus,
the sub-Chandrasekhar mass double detonation model may explain normal Type Ia
supernovae if some mechanism can be found suppressing the effects of the burning
products of the accreted He shell.

Although the Chandrasekhar mass limits the stability of WDs, this limit can be pushed
up, allowing for super-Chandrasekhar mass models which are supported by rotation.
In principle, rotating WDs simply have an increased Chandrasekhar mass due to the
rotation. But since the masses of the WDs are usually compared to the Chandrasekhar
mass of non-rotating WDs, the term super-Chandrasekhar mass WDs is used frequently.
Yoon & Langer (2004) show that accretion onto the white dwarf taking rotation into
account leads to differentially rotating WDs with masses beyond the Chandrasekhar
mass, up to 1.9 M�.

Such rapidly rotating WDs have been used as progenitor systems for thermonuclear
explosions. Pfannes et al. (2010b) find that deflagrations occurring in these rotating
WDs develop strong anisotropies along the rotational axis, thus leaving large amounts
of unburnt matter behind. These weak explosions are not able to explain normal SNe
Ia, similar to pure deflagrations of non-rotating WDs. Pure detonations, however, could
possibly explain super-luminous events of the 1991T-like subclass of SNe Ia (Pfannes
et al., 2010a). Due to the different density profile, which is not as steep as in the non-
rotating case, the pure detonation produces appreciable amounts of IME, apart from
large 56Ni masses (as high as 1.48 M�, see Pfannes et al., 2010a). Despite this, the amount
of IME may be overestimated in this study due to their simplified assumptions about the
transitions to the different burning stages. Moreover, Fink (2010) finds that an improved
treatment of the burning scheme leads to IME being present at high velocities (on the
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order of 20 000 km/s), which is incompatible with observations, which predict IME at
rather low velocities (e.g. ∼ 9000 km/s for the Si lines).

Delayed detonation models of these super-Chandrasekhar mass WDs have been
simulated by Howell et al. (2006) and Fink (2010), but cannot explain SNe Ia as no
carbon is left over after the detonation, in contradiction to observations which predict a
layer of unburnt carbon. Moreover, the velocities of the IME are too high to match the
observations of super-luminous SNe Ia.

Double Degenerate Scenario

In the double degenerate scenario, the primary carbon/oxygen white dwarf is accompa-
nied by a secondary carbon/oxygen white dwarf (Webbink, 1984). This binary system
eventually merges due to the emission of gravitational waves. Simulations of the merging
process show that the smaller secondary WD is disrupted and forms an accretion disk
around the primary (Benz et al., 1990; Lorén-Aguilar et al., 2009). At high accretion rates,
it is most likely that a carbon deflagration ignites off-center, burning inwards and thereby
converting the C/O WD into a O/Ne WD (Saio & Nomoto, 1985, 1998). A O/Ne WD
near the Chandrasekhar masse, however, may be unstable after ignition due to electron
captures. This results in a gravitational collapse, leading to the formation of a neutron
star (Saio & Nomoto, 1985; Nomoto & Kondo, 1991).

Another scenario which occurs in the case of two WDs with similar masses is the
violent merger scenario (Pakmor et al., 2010, 2011, 2012b). Instead of a slow disruption of
the lighter secondary WD, the two WDs merge violently on a time scale of only a few
orbits. Compression of the material at the interface between the merging WDs leads
to heating and thus to the formation of hot spots in high density regions. Under the
conditions given in these hot spots, a detonation may spontaneously ignite (Seitenzahl
et al., 2009; Pakmor et al., 2011, 2012b) and consume the WDs. In principle, super-
luminous events could be expected from such progenitor systems, as the combined mass
of the WDs may well exceed the Chandrasekhar mass. But as the density in most of
the material is as low as in the sub-Chandrasekhar-mass model—because the two WDs
obviously are sub-Chandrasekhar-mass WDs and the core of the primary is virtually
unaffected by the merger—the outcome of the violent merger model resembles the
sub-Chandrasekhar-mass models. Pakmor et al. (2010) find that the merger of two WDs
with masses near 0.9 M� may explain the sub-luminous class of 1991bg-like events. A
more recent simulation with two WDs with masses of 0.9 M� and 1.1 M� resembles a
normal SN Ia, also with respect to light curves and line velocities (Pakmor et al., 2012b).

It may thus be concluded that violent mergers in the double degenerate scenario can
produce sub-luminous as well as normal Type Ia supernovae. But there is still a huge
parameter space to be explored in further studies.

Apart from this, the classification in single and double degenerate scenarios may
not be as useful as it seems. The double detonation sub-Chandrasekhar-mass scenario,
for example, can have progenitor systems from both scenarios. The binary population
synthesis results from Ruiter et al. (2011) show that 87% of these double detonation
sub-Chandrasekhar-mass models incorporate a He WD as a companion star and thus
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a double degenerate progenitor system. One may also conclude here that the double
degenerate channel may not only produce mergers, but also other models.

1.3.2 Recent Findings

The recent discovery of the nearby supernova SN 2011fe by the Palomar Transient Factory
(Nugent et al., 2011a,b) provides very good observational data. In order to constrain
the progenitor system, Röpke et al. (2012) compare observed spectra with synthetic
spectra of two different explosion models: one delayed detonation of a Chandrasekhar-
mass WD and one violent merger of two sub-Chandrasekhar-mass WDs. Both models
reproduce the main features, and an unambiguous decision is not possible based on
early-time and maximum brightness spectra. Perhaps, late-time light curves depending
on the nucleosynthetic abundances of iron group elements powering the light curve may
discriminate between the different scenarios (Röpke et al., 2012).

Another way of obtaining constraints on the nature of SNe Ia progenitors involves
examining statistical properties as for example delay time distributions (DTD) and
brightness distributions of SNe Ia. The DTD describes the distribution of the times
between the birth of the progenitor system and the explosion for a sample of SNe. This
becomes more and more feasible as more and more SNe Ia are observed, delivering more
data. The results from comparing the DTD obtained from observed SN Ia rates with
analytical estimates favors the double degenerate channel (e.g. Maoz et al., 2010). This is
mainly due to their higher number in total. Theoretical predictions for the DTD can also
be obtained from binary population synthesis (Ruiter et al., 2009, 2012; Toonen et al.,
2012) , where the stellar evolution of binary systems is followed until a possible SN Ia
explosion. Ruiter et al. (2009) conclude that the double degenerate scenario should be the
dominant channel for generating SNe Ia in spiral galaxies. More recently, in conjunction
with the violent merger model (Pakmor et al., 2010, 2012b), Ruiter et al. (2012) find that
the brightness distribution and the DTD may agree with observations, thus favoring the
double degenerate scenario.

The double degenerate scenario is further supported by the fact that no surviving
companion star has been identified so far. In the single degenerate scenario, the com-
panion star should survive the explosion with a characteristic velocity, rotation and
spectrum (Marietta et al., 2000; Pakmor et al., 2008; Wang & Han, 2010; Liu et al., 2012).
But up to now, searches for the surviving companion of Tycho’s supernova, e.g., remain
unclear (Ruiz-Lapuente et al., 2004; Kerzendorf et al., 2009). Another supernova remnant,
SNR 0509-67.5, also shows no sign of a surviving companion star (Schaefer & Pagnotta,
2012; Ruiz-Lapuente, 2012).

On the other hand, the detection of circumstellar material from the companion star
would support the single degenerate scenario. In some cases, variable absorption of
the Na I D line has been detected (Patat et al., 2007) and interpreted as being caused
by circumstellar material probably stemming from a red giant companion. Another
indication of circumstellar material was found by Sternberg et al. (2011), who detect
blue-shifted lines in 35 SNe Ia and conclude that these originate from mass outflows in
single degenerate systems. They estimate the fraction of SNe Ia in spiral galaxies to be
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at least 20% to 25%. Recently, indications of circumstellar material have also been found
directly in the spectra of PTF 11kx (Dilday et al., 2012).

The picture of SNe Ia progenitor systems emerging in the last few years seems
to combine different progenitor system in order to explain the diversity of Type Ia
supernovae. Different progenitor channels may contribute to normal SNe Ia and also
explain the diverse peculiar subtypes.

1.4 Impacts on Other Research Fields

One research field where Type Ia supernovae play an important role is the chemical
evolution of galaxies. Because the explosion ejecta move with high velocities up to
20 000 km/s into the interstellar space, SNe Ia are a major source of distributing heavy
elements in galaxies, together with core collapse supernovae. As an example, a large
mass up to 1 M� of 56Ni is produced in a SN Ia, which subsequently decays to stable
56Fe. It is assumed that a large fraction of stable iron in the galaxy is contributed by SNe
Ia (55% of IGE, Iwamoto et al., 1999). Furthermore, the chemical composition of the solar
system is well known and can be used to infer constraints on SN Ia explosion models
(Iwamoto et al., 1999) and SN Ia delay-time distributions (Kobayashi & Nomoto, 2009).

As SNe Ia can be used as standardizeable candles, they allow distance measurements
in the Universe. With this method, it could be shown that the expansion of the Universe
is accelerating (Perlmutter et al., 1997, 1999; Riess et al., 1998; Schmidt et al., 1998). This
fascinating discovery was awarded with the physics Nobel Prize in 2011.

1.5 Previous Work

The microscopic properties of nuclear burning fronts in degenerate carbon/oxygen
matter have been subject to studies in the past: Khokhlov (1988) computes parameters of
combustion waves—deflagrations and detonations—for different initial compositions
(He, different C/O mixtures). Calculated are for example the propagation speed, the
energy release and the maximum temperature.

The propagation of deflagration fronts, driven by conduction, has been examined
in more detail for different initial compositions with different methods in Timmes &
Woosley (1992). They compute the speed, width and density structure of one-dimensional
laminar burning fronts.

More details on the structure of detonation waves are given by Khokhlov (1989).
Properties of one-dimensional, steady planar detonation waves are calculated, such as
propagation velocities and the thickness of the detonation wave. The calculations are
done for different C/O mixtures. It is also found that detonation waves in degenerate
C/O matter is of the pathological type at higher densities instead of the Chapman-
Jouguet type. This work was extended by Gamezo et al. (1999), where properties of
one-dimensional detonation fronts are calculated also for the pathological case, but
only for a equal-by-mass C/O mixture. Additionally, they find that two-dimensional
simulations show a cellular pattern similar to terrestrial detonations. The pathological
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structure of the detonation wave is further investigated by Sharpe (1999), who calculates
the full structure of the detonation wave, also behind the pathological point.

The effect of different progenitor compositions on SN Ia explosion models has been
studied by Höflich et al. (1998) for one-dimensional delayed detonation models. A de-
pletion of carbon in their models led to a decrease in the 56Ni production. Consequently,
Umeda et al. (1999) state as a working hypothesis for explaining the variety of luminosi-
ties in SNe Ia, that larger carbon mass fractions should lead to a larger production of
56Ni. The three-dimensional deflagration models of Khokhlov (2000) agree with this
trend. In contrast to this, Röpke & Hillebrandt (2004) find in their three-dimensional
models with a better modeling of the turbulent flame structure, that the amount of 56Ni
produced in the explosion does not strongly depend on the carbon-to-oxygen ratio. An
extended study with more three-dimensional deflagration models supports this (Röpke
et al., 2006a). Their conclusion that the carbon-to-oxygen ratio cannot account primarily
for the variations in SNe Ia may be invalid, as pure deflagrations can probably not
explain normal SNe Ia. This is supported by newer results by Kromer et al. (2012),
who suggest that deflagration models cannot account for normal SNe Ia, but rather
for subluminous 2002cx-like objects. Recent studies of 2D simulations (Kasen et al.,
2009) and 3D simulations (Seitenzahl et al., 2012) of delayed detonation models show
that delayed detonations of Chandrasekhar-mass WDs may explain Type Ia supernovae.
Röpke et al. (2012) compare a delayed detonation model of a Chandrasekhar-mass WD
and a violent merger of two sub-Chandrasekhar-mass WDs to the nearby SN 2011fe.
They compare synthetic spectra to the observed spectrum and find, e.g., that the Si II
line is blueshifted, meaning that the Si II moves at too high velocities. They speculate
that this velocity could be less for a carbon depleted core beacuse of the lower overall
nuclear energy.

Therefore, this work examines the impact of a different carbon-to-oxygen ratio on
delayed-detonation simulations in two and three dimensions.

1.6 Objectives of This Work

This work improves the modeling approach of the explosive stage of thermonuclear—
i.e. Type Ia—supernovae by considering more realistic progenitor models. To this
end, the impact of a different progenitor composition on thermonuclear flames is
investigated. Because of the multi-scale character of the problem—the flame width is
orders of magnitudes below the numerical resolution—the nuclear burning fronts are
approximated as discontinuities in the level set approach. In this approach, the chemical
composition behind the burning front is determined from tables, which are obtained in
an iterative calibration procedure.

Using these tables, the impact of different compositions of the progenitor WD on large
scale, multi-dimensional explosion simulations is examined. The model chosen here
is the delayed detonation model of a Chandrasekhar-mass WD. The initial progenitor
composition is also allowed to vary spatially according to newer results from stellar
evolution theory.
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The objectives of this diploma thesis are on the one hand to improve the explosion
modeling by extending the involved physics. This is accomplished by taking into account
different initial compositions as predicted from stellar evolution simulations. On the
other hand, the agreement of these more realistic models with observations are tested.
Firstly, the variability of the luminosities of normal SNe Ia should be reproduced by
variations in the initial compositions. Secondly, the agreement of synthetic light curves
and spectra obtained by radiative transfer calculations with observables is tested.

One expects for a realistic progenitor structure with a carbon depleted core that the
kinetic energy of the ejecta decreases. This is caused by the higher binding energy of
carbon compared to oxygen leading to a lower overall nuclear energy release. The lower
kinetic energy then results in a red-shift of line velocities in the P-Cygni line profiles
of the spectrum. As in current spectra of delayed detonation Chandrasekhar-mass
models the line velocities for e.g. the Si II line are too high (cf. Röpke et al., 2012), this
could improve the agreement between synthetic and observed spectra. Moreover, the
whole dynamical evolution is expected to change because of the different burning front
properties. Apart from this, the predictions for the size and detailed composition of the
carbon depleted core show a certain variability. Thus, it is important to know if this
variability may help to explain the diversity in luminosity of normal SNe Ia, which is
important for distance measurements used in cosmology.

The outline of this diploma thesis is the following: Chapter 2 introduces the physical
concepts which are important in this work. Chapter 3 explains the numerical methods
used in the simulations. In Chapter 4, the results of the calibrations and large scale sim-
ulations of delayed detonation models are presented. Finally, in Chapter 5, conclusions
are drawn from these results.
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2 Physical Foundations

2.1 Hydrodynamics

At the heart of the numerical method used in this work lies the continuum assumption,
that the medium consisting of individual particles is assumed to form a continuous fluid.
This macroscopic fluid can then be described by the hydrodynamical Euler equations.
The prerequisite for this assumption to be fulfilled is that the mean free path λ of the
individual particles is small against the length scale L, over which important properties
of the problem change significantly (Müller, 1998). If this is the case, the medium can be
thought to consist of “fluid elements” being small compared to L but large compared
to λ. These fluid elements contain matter being in local thermal equilibrium—which is
reached by collisions of the individual particles on short length scales. Moreover, the
small λ ensures that only a small fraction of the particles is scattered to neighbouring
fluid elements.

The system under consideration, WD matter, can be approximated very well by the
description of a fully ionized plasma with arbitrarily degenerate electrons, thus fulfilling
the continuum assumption (Hillebrandt & Niemeyer, 2000).

2.1.1 Conservation Laws

The hydrodynamical equations can be derived either in a continuum approach (Landau &
Lifschitz, 2007) or from statistical physics using the moments of the Boltzmann equation
(Landau & Lifschitz, 1983; Shore, 2007). As the continuum approach is more instructive
when looking at the numerical implementation, it is used to derive the basics of the
hydrodynamical equations, similar to Röpke (2003).

The main hydrodynamical equations have the form of conservation laws. Given
an extensive quantity Q in a fluid volume V, the quantity can be computed from the
corresponding density q(x, t) using

Q(t) =
˚

V

q(x, t)dV.

A change of this extensive quantity in time can only happen through surface fluxes,
where part of the quantity is transported outside or inside the volume, or through the
existence of sources or sinks inside the volume. This can be quantified as

dQ
dt

=
dQf

dt
+

dQs

dt
, (2.1)

where the first term gives the contribution by the flux and the second term the contribu-
tion by the sources.

17



2 Physical Foundations

The change caused by the flux is calculated by integrating the flux density jq over the
surface of the volume V,

dQf

dt
= −

‹

∂V

jq(x, t) · dS = −
˚

V

∇ · jq(x, t)dV , (2.2)

where the last equation follows from the divergence theorem, assuming the flux density
jq to be differentiable.

The change in Q resulting from the sources inside the volume can be obtained by
integrating the source density sq over the volume V,

dQs

dt
=

˚

V

sq(x, t)dV. (2.3)

Now combining equations (2.2) and (2.3) with equation (2.1) yields the integral form of
the balance equation,

d
dt

˚

V

q(x, t)dV = −
‹

∂V

jq(x, t) · dS +

˚

V

sq(x, t)dV, (2.4)

which does not require the functions q and jq to be differentiable.
If now the functions q and jq are differentiable, the differential form of the balance

equation can be obtained from (2.4), using (2.2) and the fact that V is arbitrary,

∂tq(x, t) +∇ · jq(x, t) = sq(x, t). (2.5)

As this differential form of the balance equation (2.5) cannot be applied to functions
containing discontinuities, the integral form (2.4) is better suited for computing weak
solutions. The integral formulation is also used in the discretization of our numerical
method (see Section 3.1.3).

2.1.2 Reactive Euler Equations

In order to describe an ordinary fluid, balance equations are needed for mass, momentum
and energy. In the system considered here, combustion processes play an important role,
therefore balance equations for the mass fractions of the chemical species have to be
added.

The balance equation for mass yields the continuity equation

∂tρ +∇(ρu) = 0, (2.6)

with ρ being the mass density and u the fluid velocity. Concerning momentum, the
corresponding balance equation is given by

∂t(ρu) +∇(ρu⊗ u) = −∇p + ρ f , (2.7)
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with an external force f , which in our case will be the gravitational force derived from
the gravitational potential f = ∇Φ. The balance equation for the total energy etot can be
written as

∂t(ρetot) +∇(ρetotu) = −∇(pu) + ρu · f . (2.8)

In order to describe combustion processes resulting in varying chemical composition,
the mass fractions X1 (Xj = ρj/ρ) are introduced for the N chemical species. A new set
of balance equations describes for the coupling to the hydrodynamics,

∂t(ρXj) +∇(ρuXj) = rj(ρ, T, X) , j = 1, . . . , N , (2.9)

where rj is given by the reaction rate for species j 2. The influence of the thermonuclear
reactions on the energy in the medium is expressed as an additional source term s(r) in
the energy balance equation,

∂t(ρetot) +∇(ρetotu) = −∇(pu) + ρu · f + ρs(r), (2.10)

the source term s(r) depending on the nuclear reaction rates.
This set of equations is closed by the equation of state, which relates temperature and

pressure to density, internal energy and composition,

T = Teos(ρ, ei, X),

p = peos(ρ, ei, X).
(2.11)

The details of the equation of state of white dwarf matter are given in Section 2.5.
The equations presented so far describe an ideal fluid consisting of N reacting species

under the influence of an external force f , which in our application is given by the
gravitational force.

To account for the properties of real fluids, an extension of these equations is necessary.
Important physical effects to be included are viscosity (leading to the Navier-Stokes
equations), thermal and chemical diffusion. These effects are crucial to the theoretical
understanding of the microscopic properties of flame propagation in SNe Ia. But as these
effects are neglected in the numerical implementation for our large scale simulations—for
reasons given in Section 3.1.3—the resulting equations will not be given here.

2.1.3 Instabilities

During the course of a SN Ia, several hydrodynamical instabilities may occur, depending
on the channel. The most important instabilities occur during the deflagration phase—the
Rayleigh-Taylor and Kelvin-Helmholtz instabilities.

1Note that X denotes a vector in the N-dimensional space of chemical species, not in ordinary space. The
same holds for the rates r.

2Due to the additional constraint of particle conservation, ∑j Xj = 1, not all of the equations (2.9) are
independent. One way of dealing with this problem is solving for (N − 1) species, computing the last
species via conservation of the particle number. A numerically more stable solution is mentioned in
Müller (1998).
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The Rayleigh-Taylor instability is caused by an inverted density profile in a gravitational
field. If a fluid layer of high density is located in the direction of lower gravitation
(“above”) compared to a fluid layer of lower density, the front separating the two layers
develops an instability. This is caused by buoyancy driving material from the lower
layer up, thereby forming characteristic, mushroom-shaped fingers. As linear stability
analysis shows (e.g. Shore, 2007), this instability forms for any layered fluid system with
a density inversion.

In SNe Ia, this density inversion is reached in the deflagration phase. The burnt
material in a deflagration has a lower density and pressure than the initial, unburnt fuel
(compare Section 2.3). As the deflagration is initiated near the center of the WD, burnt
material with low density is generated near the center, thus giving rise to Rayleigh-Taylor
instabilities.

In contrast to the Rayleigh-Taylor instability, the Kelvin-Helmholtz instability is not
driven by buoyancy, but by shear. Given two fluid layers with a relative velocity between
them, a perturbation at the boundary layer causes one fluid to stream around it. This
results locally in a lower pressure, thus enhancing the perturbation. As the situation is
symmetric, the same process happens in the other layer, leading to the generation of
a vortex sheet. This is an important mechanism for creating turbulence. Again, linear
stability analysis (Shore, 2007) can show that this instability can even occur in layers
with the same density being in relative movement to each other.

The Kelvin-Helmholtz instability appears as a secondary instability in SNe Ia, accom-
panying Rayleigh-Taylor instabilities while forming mushroom-shaped fingers.

Another example for the occurrence of these instabilities are the mushroom clouds
resulting from explosions on Earth, where hot ashes are driven up into the colder and
denser atmosphere.

2.2 Nuclear Reactions

2.2.1 Nuclear Reaction Networks

In order to compute detailed nucleosynthetic abundances—for example the rates in
equation (2.9)—a nuclear reaction network has to be employed. This is a large set of non-
linear, coupled ordinary differential equations connecting the abundances of different
species through nuclear reactions. The nuclear reactions can be classified by the number
of nuclei participating in the reaction into one-body, two-body and three-body reactions.
Important one-body reactions are weak reactions like β decay and electron capture, but
also photo-disintegration. Two-body reactions contain most strong reactions, where two
nuclei take part. Because of statistical reasons, three-body reactions are usually very
slow and thus not as important as the other reactions. The most important three-body
reaction, however, is the triple-α reaction 3(4He)→ 12C + γ.

The change in the specific abundances Yi = Xi/Ai, where Ai is the atomic number of
species i, can be expressed as (Müller, 1998)

Ẏi = ∑
j

ci(j)λjYj + ∑
j,k

ci(j, k)ρNA〈jk〉YjYk + ∑
j,k,l

ci(j, k, l)(ρNA)
2〈jkl〉YjYkYl , (2.12)
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where the three terms describe one-body, two-body and three-body reactions, respectively.
λj is the one-body reaction rate (β decay, electron capture, photo disintegration) and 〈jk〉
and 〈jkl〉 denote averaged products of cross section and relative velocity. The statistical
factors ci avoid multiple counting of rates and are given by (Müller, 1998)

ci(j) = ±Ni, ci(j, k) = ± Ni

Nj!Nk!
and ci(j, k, l) = ± Ni

Nj!Nk!Nl !
. (2.13)

Here, the numbers Ni denote the total number of nuclei of species i in the corresponding
reaction and the sign denotes production (+) or destruction (−) of the nucleus of kind i.

2.2.2 Nuclear Statistical Equilibrium

At temperatures above about 2× 109 K and corresponding densities, the strong reactions
between the isotopes become very fast, thereby establishing a statistical equilibrium—also
called nuclear statistical equilibrium (NSE). The problem of calculating the equilibrium
of a set of chemical reactions is basically one of statistical physics. An overview of the
equations as well as computations for 333 parameter values can be found in Clifford &
Tayler (1965).

The basic assumption is that there is an equilibrium reaction between a nucleus with
Z protons and A− Z neutrons and the free protons and neutrons,

AZ
 Zp + (A− Z)n, (2.14)

which is reached over several intermediate reactions like for example AZ(γ, p)A−1(Z− 1),
AZ(γ, n)A−1Z, α(γ, 2n)2p etc. The equilibrium condition for reaction (2.14),

µi = Ziµp + (Ai − Zi)µn, (2.15)

relates the chemical potential µi of nucleus i to the chemical potentials of protons µp and
neutrons µn. Under the given thermodynamic conditions the nuclei can be approximated
with a Maxwell-Boltzmann distribution. The specific abundance Yi for the species i
in equilibrium can then be computed as (see standard textbooks on statistical physics,
e.g. Reichl, 2009)

Yi =
ρAi

mi

(
mikT
2πh̄2

)3/2

ωi exp
(

µi −mic2

kT

)
, (2.16)

where mi is the mass of nucleus i and ωi = ∑r(2J(i)r + 1) exp
(
− εi,r

kT

)
is the statistical

weight (the sum extends over all energy states r with energy ε i,r and spin J(i)r ).
Combining Equation (2.15) with Equation (2.16) yields the basic equation

Yi = YZi
p Y(Ai−Zi)

n
ωi A3/2

i
2Ai

·
(

ρ

mp

) 3(Ai−1)
2

exp

(
(Zimp + (Ai − Zi)mn −mi)c2

kT

)
, (2.17)

where mi = Aimp was assumed. This assumption is fulfilled for heavy isotopes with an
error of about 1%. In addition to these N − 2 equations, two more conditions allow for
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the computation of two independent variables, namely the conservation of the baryon
number,

∑
i

AiYi = 1, (2.18)

and—as the weak processes happen on much longer time scales—the condition for the
electron fraction Ye,

∑i ZiYi

∑i AiYi
= Ye. (2.19)

This set of equations is then usually solved at given temperature, density and electron
fraction for the chemical potentials of protons µp and neutrons µn. This allows for
the subsequent computation of all other specific abundances Yi using Equation (2.17).
Computations spanning a density range from 1× 104 g/cm3 to 1× 108 g/cm3 and a
temperature range from 2× 109 K to 8× 109 K for several Ye have already been done in
the 1960s by Clifford & Tayler (1965).

2.3 Combustion Physics

The combination of hydrodynamics and thermonuclear reactions gives rise to a vast
range of phenomena reaching from violent burning in detonations to quiet hydrostatic
burning as it occurs in the interior of stars. In the context of SNe Ia explosions, the two
most important burning modes are detonations and deflagrations.

2.3.1 Simple Theory

The simplest theory of burning fronts (e.g. Landau & Lifschitz, 2007) is understood quite
well, especially for detonations. The assumptions for the simplified treatment are that
the wavefront is a one dimensional plane, that the flow through the burning front is
steady and that the reaction zone is thin.

As an approximation, the burning front can then be regarded as a hydrodynamical
discontinuity or shock. If we now look at the reference frame where this discontinuity is
at rest, let the unburnt material (density ρ0, temperature T0 and composition X0) stream
into the shock with a velocity D and the burnt material (density ρ, temperature T and
composition X) come out with velocity u. The pressure p and the internal energy ei are
given by the equation of state (compare Equation (2.11)). The total energy etot is given by

etot(ρ, T, X) = ei(ρ, T, X)− q(X), (2.20)

taking into account the binding energy q > 0. Integration of the one dimensional
hydrodynamical equations over the discontinuity shows that mass flux (2.21), momentum
flux (2.22) and energy flux (2.23) are conserved (Landau & Lifschitz, 2007),

ρ0D = ρu, (2.21)

p(ρ0, T0, X0) + ρ0D2 = p(ρ, T, X) + ρu2, (2.22)

etot(ρ0, T0, X0) +
p(ρ0, T0, X0)

ρ0
+

D2

2
= etot(ρ, T, X) +

p(ρ, T, X)

ρ
+

u2

2
. (2.23)
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Figure 2.1 | Jump conditions for burning
fronts. Shown is the Hugoniot adiabatic (2.25)
with the two tangent Rayleigh lines determin-
ing the Chapman-Jouguet points O and O’.
For a discussion of the different intervals,
see Equation (2.26) and the following para-
graphs. The gray area symbolizes unphysical
end states. This figure is similar to Landau
& Lifschitz (2007, Figure 136), but was com-
puted for a polytropic equation of state with
γ = 5/3.

These equations can be combined to the Rankine-Hugoniot jump conditions, namely the
Rayleigh line,

R(p, v) = p− p0 +
D2

v2
0
(v− v0) = 0, (2.24)

here parametrized by pressure p and specific volume v = 1
ρ , and the Hugoniot adiabatic,

H(p, v) = ei − ei,0 + ∆q +
1
2
(p + p0)(v− v0) = 0, (2.25)

where ∆q = q0 − q denotes the reaction energy release.
These conditions can now be analyzed in the p-v-plane (compare Figure 2.1), follow-

ing Landau & Lifschitz (2007). As the final state has to fulfill the Rankine-Hugoniot
conditions, its representation in the p-v-plane has to be on the Rayleigh line as well as on
the Hugoniot adiabatic. From the point of the initial conditions p0 and v0, several lines
divide the Hugoniot adiabatic in five interesting regions: the vertical and horizontal
lines (leading to A and A’) as well as the tangents to the adiabatic (leading to O and O’).
The interval between A and A’ (with p > p0 and v > v0) is unphysical because the mass
flux here would be imaginary.

As Landau & Lifschitz (2007) show, the velocities of the unburnt material, D, and of
the burnt material, u, fulfill the inequalities

above O: D > c0, u < c;

between A and O: D > c0, u > c;

between A’ and O’: D < c0, u < c;

below O’: D < c0, u > c,

(2.26)

where c0 and c are the speed of sound in the unburnt and burnt material, respectively.
The regime of detonations lies above O, where the burning front propagates supersoni-

cally with respect to the unburnt material. In this case, the hydrodynamical shock heats
the unburnt fuel, thus crossing the burning threshold of the fuel.
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Between A and O, burning occurs that is not like a detonation, but still propagates
supersonically due to high heat conduction (Landau & Lifschitz, 2007). Fickett & Davis
(1979) use the term “strong detonations” for the region above O and “weak detonations”
for the interval between A and O. There, it is also stated that “strong detonations”
correspond to boundary conditions with a piston driving the detonation, whence they
are also called “overdriven detonations”. More details on detonations are given in
Section 2.3.2.

The solution at the points O and O’, where u = c (i.e. the motion behind the front is
sonic), are called Chapman-Jouguet solutions. For a self-sustained detonation, it is the
physical solution (Landau & Lifschitz, 2007).

The interval between A’ and O’ belongs to deflagrations, which are slow burning fronts
propagating subsonically. The physical mechanism differs from detonations in that the
key process here is thermal diffusion. Heat is being transferred from the burning flame
to the cold, unburnt material, which is thus heating up to the point where burning can
start. Deflagrations are described in more detail in Section 2.3.3.

Below O’, no stable burning front can emerge, because an absolute instability occurs
under the conditions given here. This is described in more detail in Landau & Lifschitz
(2007).

An important difference between detonations and deflagrations can be seen from
Figure 2.1 and Equation (2.26): For detonations, the pressure in the burnt material
increases (p > p0), the specific volume decreases (v < v0, equivalent to ρ > ρ0) and
the velocity decreases as well (u < D). This means that after the burning, the material
is compressed and moves in the direction of the burning front. In contrast to this,
for deflagrations, there is a pressure decrease (p < p0), an increase in specific volume
(v > v0) and velocity (u > D). Here, the burnt material is not compressed, but rarefied,
and moves in the opposite direction as the front in the rest frame of the unburnt material.

2.3.2 Detonations

A detailed view of the jump conditions for detonations is shown in Figure 2.2. The
physical mechanism can in this simple theory be understood as follows (compare Landau
& Lifschitz, 2007; Fickett & Davis, 1979): The initial point a at (v0, p0) has to be connected
to the final state which corresponds to a point on the Hugoniot adiabatic. The Chapman-
Jouguet solution corresponds to the point O in Figure 2.2. In order to reach this state, the
matter is first compressed by a hydrodynamical shock wave and moves up to the point e.
This results in heating of the material, thus allowing for nuclear burning. The final state
O is reached by following the Rayleigh line. The same can be said for strong detonations:
First, the hydrodynamical shock wave brings the system from a to d, and after the
burning it moves down the Rayleigh line to the final point c. As this configuration is
stable, the point b cannot be reached by this mechanism. Thus, “weak detonations”
corresponding to points below O are not explained by this mechanism and consequently
are not really “detonations”.

This model with the assumption of a finite reaction rate, where the reaction is separated
from the hydrodynamical shock, extends the simplest theory and is usually called
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2.3 Combustion Physics

Zeldovich-von Neumann-Döring theory or ZND theory. The ZND theory is explained
extensively in Fickett & Davis (1979). The model assumes that the hydrodynamical shock
is much thinner than the reaction zone and can thus be modeled by a discontinuity. This
discontinuity is then followed by an extended reaction zone. The separation of chemical
reactions and the hydrodynamical shock is justified since many collisions occur at the
shock front establishing mechanical equilibrium but a much smaller number of collisions
lead to chemical reactions. The basic assumptions of the theory can be summarized as
follows (Fickett & Davis, 1979): There is a one-dimensional flow with the shock being
modeled as a hydrodynamical discontinuity because microscopic transport effects—e.g.
conduction, viscosity, diffusion—are neglected. The reaction starts exactly at the shock
and all variables besides the chemical composition are in local thermal equilibrium.
Now, these assumptions lead to a steady one dimensional flow. In this physical picture,
the intervals in Figure 2.2 from d to c and from e to O can now be interpreted as the
chemical reaction progressing from the hydrodynamical shock (d; e) to its final state (c;
O). Each point on these intervals of the Rayleigh lines also belong to Hugoniot adiabates
corresponding to partial reactions down to the Hugoniot adiabatic of the final state.

The detailed structure of the reaction zone can be obtained by integrating the one-
dimensional, steady version of the reactive Euler equations (2.6), (2.7), (2.10) and (2.9)
together with the equation of state (2.11). Using thermodynamic, differential relations
for the pressure p and energy e, the reactive Euler equations can be written as (Khokhlov,
1989; Sharpe, 1999)

dρ

dx
=

ρc2
f

u
σ · r

u2 − c2
f
, (2.27)

dT
dx

=

(
∂p
∂T

)−1

T,Y

{[
u2 −

(
dp
dρ

)
T,Y

]
dρ

dx
− dp

dY
· dY

dx

}
. (2.28)

p

v

p0

v0

O

a

b

c

d

e Figure 2.2 | Jump conditions for the detona-
tion branch. Shown is the Hugoniot adiabatic
(2.25) (thick, solid) and the shock adiabatic
for ∆q = 0 (thick, dashed). Moreover, the
Rayleigh lines corresponding to a Chapman-
Jouguet detonation and to a detonation with
higher velocity are plotted. The points a to e
are explained in the text. This figure is sim-
ilar to Landau & Lifschitz (2007, Figure 132)
and displays just another sector of Figure 2.1,
although with a different scaling of the axes.
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Additionally, the coupling to the chemical reactions is given by (compare Equation (2.9))

dY
dx

=
r
u

. (2.29)

The rates r can be computed with a nuclear network as given in Equation (2.12). Here,
c f is the frozen sound speed at constant chemical composition,

c2
f =

(
dp
dρ

)
S,Y

=

(
∂p
∂ρ

)
T,Y

+
T
ρ2

(
∂p
∂T

)2

ρ,Y

(
∂e
∂T

)−1

ρ,Y
, (2.30)

and σ · r the thermicity, which can be interpreted as the heat release function (Fickett &
Davis, 1979) with

σ =
1

ρc2
f

{(
∂p
∂Y

)
ρ,T,Yi

−
[(

∂e
∂Y

)
ρ,T,Yi

−
(

∂q
∂Y

)
Yi

](
∂p
∂T

)
ρ,Y

(
∂e
∂T

)−1

ρ,Y

}
(2.31)

being the thermicity coefficients.
In order to compute the reaction zone structure, first, the state behind the hydro-

dynamical shock, being a discontinuity, is obtained from the Rankine-Hugoniot jump
conditions, equations (2.24) and (2.25). This also gives a relation between the fluid
velocity u and the detonation propagation speed D:

u =
ρ0

ρ
D. (2.32)

Now, giving D as an initial value, and thus u, according to Equation (2.32), the structure
of the reaction zone is obtained by integrating equations (2.27), (2.28) and (2.29) from
the post-shock state into the reaction zone. For the Chapman-Jouguet state, the fluid
velocity u is determined by the equilibrium speed of sound, u = ce, where (Fickett &
Davis, 1979)

c2
e =

(
∂p
∂ρ

)
S,∆ f=0

= c2
f

{
1− c2

f σ · φ−1 · σ
}

. (2.33)

Here, ∆ f = (∂ f /∂Y)T,ρ denotes the change of the free energy f with the composition,
which is zero in chemical equilibrium. The elements of the matrix φ are given by
φij =

(
∂2 f /(∂Yi∂Yj)

)
T,ρ. Perturbations which have high frequencies propagate with

the frozen sound speed, as the chemical equilibrium (NSE in this case) cannot be
established since the nuclear reactions are too slow to adapt to the new density and
temperature. Perturbations with lower frequencies, on the other hand, travel with the
equilibrium sound speed, as the chemical equilibrium is established faster than density
and temperature vary. In the ZND theory, the fluid velocity should equal the equilibrium
sound speed because NSE is established at the end of the reaction zone. The difference
between these sound speeds is also discussed in Khokhlov (1988) in the context of
detonations in degenerate C/O matter.

If at some point in the reaction zone a frozen sonic point occurs with u = c f and
σ · r at the same time, the detonation is of the pathological type (Fickett & Davis, 1979;
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Khokhlov, 1989; Sharpe, 1999). This can lead to higher detonation propagation velocities
(Sharpe, 1999). The cause for this pathological nature of the detonation is an endothermic
reaction.

All these one-dimensional theories may only be seen as an averaged description of
the real, multi-dimensional structure of the wave front. Since the detonation wave front
undergoes certain instabilities, a cellular pattern behind the front emerges (Fickett &
Davis, 1979). The propagation of the front is ensured by transverse waves behind the
incident shock.

Application to SNe Ia

In the context of Type Ia supernovae, the simple theory using the Rankine-Hugoniot
conditions was applied by Khokhlov (1988) to detonations in degenerate carbon/oxygen
matter as found in white dwarfs. There, the Chapman-Jouguet propagation velocities
and Hugoniot adiabates are calculated for different compositions. The ZND theory
was applied by Khokhlov (1989) to detonation waves in thermonuclear supernovae.
The structure of the wavefront is computed for an equal-by-mass C/O composition,
taking the pathological nature of the detonation into account. This pathological nature
of the detonation results from the NSE relaxation being endothermic at densities &
107 g/cm3 (Khokhlov, 1989). As Khokhlov (1989) was not able to continue the solution
for the detonation wave structure behind the frozen sonic point, his solution ends there.
Khokhlov (1989) also finds that the reaction zone consists of three separated burning
stages: carbon burning, oxygen burning and silicon burning to NSE.

This was examined by Sharpe (1999), where for an equal-by-mass mixture of C/O the
complete structure of the detonation reaction zone is computed. The pathological point
is determined via a bisection method, reaching either a zero thermicity point or a frozen
sonic point. The solution is then continued using a linearization around the pathological
point.

The reaction zone structure was also computed by Gamezo et al. (1999), giving
the detonation propagation speeds depending on the density for an equal-by-mass
C/O composition, which for higher densities may be larger as the Chapman-Jouguet
detonation speeds by a maximum of roughly 6%. They also compute the reaction zone
lengths for the different burning stages and find that the silicon burning length gets
larger than the WD at low densities. At very low densities, even the oxygen burning
length may be larger than the size of the WD. Moreover, using two-dimensional time-
dependent simulations of the reactive Euler equations, Gamezo et al. (1999) were able to
find cellular patterns at the carbon, oxygen and silicon scales, which are similar to the
patterns found in terrestrial detonations (Fickett & Davis, 1979).

2.3.3 Deflagrations

For deflagrations, the maximum propagation velocity is reached at the Chapman-Jouguet
point O’ (Figure 2.1). For degenerate C/O matter, the deflagration speeds according to
the Rankine-Hugoniot conditions, equations (2.24) and (2.25), have been calculated by
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Khokhlov (1988). As already noted there, the propagation of deflagration fronts in white
dwarfs are affected by the Rayleigh-Taylor instability (compare Section 2.1.3), which
leads to an increase in the flame surface and hence to a faster propagation.

The propagation of deflagration flames is further studied in Timmes & Woosley (1992)
with several methods. They compute the laminar flame speed for different compositions
and give the following, fitting formula for the propagation speed:

vlam = 92.0
(

ρ

2× 109

)0.805 (X(12C)

0.5

)0.889

km/s (2.34)

Further, the acceleration of the flame by the Rayleigh-Taylor instability inducing turbu-
lence is discussed. If the thickness of the burning front, λmax, is much larger than the
minimum instability wavelength, λmin, the flame surface will become wrinkled with the
deformation lengths being in between these two lengths. This results in a higher surface
of the flame and an increase in the fractal dimension of the flame D, thus accelerating
the flame. Timmes & Woosley (1992) use

veff = vlam

(
λmax

λmin

)D−2

(2.35)

as an estimate for the effective turbulent velocity veff, where the fractal dimension is
assumed to lie between 2 and 2.7. For turbulent flames, the fractal dimension is expected
to lie between 2.3 and 2.36 (Niemeyer & Woosley, 1997).

As found by Damköhler (1940), the turbulent propagation of the deflagration flame
decouples from the laminar burning speed and is dominated by the properties of the
turbulence. More sophisticated, three-dimensional simulations using subgrid-scale
modeling of turbulent effects showed that the propagation velocity is dominated by the
turbulent velocity fluctuations (Niemeyer & Hillebrandt, 1995; Reinecke et al., 1999b)
induced by the Rayleigh-Taylor and Kelvin-Helmholtz instabilities. This subgrid-scale
modeling has been refined by Schmidt et al. (2006a,b). For more details on the numerical
implementation, see Section 3.1.3.

2.3.4 Deflagration-Detonation Transition

It is known from terrestrial experiments, that turbulent deflagration flames may turn
into detonation waves under certain circumstances (Clavin, 2004, and references therein).
The main reason for this deflagration-detonation transition (DDT) to occur lies in the
emergence of temperature gradients in hot spots, triggering the detonation.

The idea that the turbulent deflagration flame may undergo such a DDT in Type
Ia supernovae was introduced by Blinnikov & Khokhlov (1986) and modeled in one-
dimensional simulations by Khokhlov (1991a,c,b). The delayed detonation model (see
also Section 1.3.1), where the burning starts as a subsonic deflagration and then turns
into a supersonic detonation, could cure some of the shortcomings of pure detonation
and pure deflagration models. On one hand, the produced mass of 56Ni is enough to
explain normal SNe Ia due to the detonation, on the other hand, a sufficient amount
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of IME are produced since the WD is pre-expanded by the initial deflagration. The
reason for the DDT to occur lies in the formation of pre-heated hot spots in the fuel with
temperature gradients, similar to terrestrial experiments. Mechanisms leading to such
hot spots may be the pre-compression ahead of the deflagration wave, the mixing of hot
ashes with cold fuel in turbulent flames or shock heating (Khokhlov, 1991a).

That detonations may form in such hot spots was confirmed in one-dimensional
hydrodynamical simulations by Niemeyer & Woosley (1997), Röpke et al. (2007) and
Seitenzahl et al. (2009). There, the critical parameters are determined which are needed
for a successful initiation of a detonation in degenerate C/O matter.

In more recent studies, the most probable mechanism for hot spots to emerge is
assumed to be the mixing of heat from the hot ashes into the cold fuel (Niemeyer
& Woosley, 1997; Röpke, 2007; Woosley, 2007; Woosley et al., 2009). This occurs as
the turbulent flame changes from the flamelet regime to the distributed regime. In
the flamelet regime, which governs the flame evolution during the largest part of the
explosion, the internal flame structure is not affected by turbulence, only the large-
scale structure. This is because the Gibson scale is larger than the flame width, where
the Gibson scale is defined as the length scale, where the velocity fluctuations caused
by turbulence are equal to the laminar burning speed. Thus, the deflagration flame
burns faster through turbulent eddies below the Gibson scale than these can affect the
internal structure (e.g. Röpke, 2007). If now the density decreases, as occurring during
a deflagration in a WD, where the material is expanded during the flame evolution,
the Gibson scale also decreases, whereas the flame width increases (Röpke, 2007). This
marks the transition to the distributed burning regime, where the internal wave structure
is distorted by turbulent eddies. This allows hot ashes and cold fuel to be mixed, which
is not possible in the flamelet regime.

The distributed flame width has further to become comparable to the largest turbulent
eddies, which restricts the density range where a DDT may occur to (0.5 – 1.5)× 107 g/cm3

(Woosley, 2007). Moreover, large turbulent velocity fluctuations & 108 cm/s are necessary
in order to ensure strong mixing between ashes and fuel (Lisewski et al., 2000). That
these occur with probabilities high enough to trigger a detonation was confirmed in
three-dimensional simulations by Röpke (2007).

Woosley et al. (2009) give a more detailed discussion of the distributed burning regime,
and conclude that a DDT may occur in the this regime, when high velocity fluctuations
are present due to turbulence.

The numerical implementation of the DDT criterion employed in the simulations
is discussed in Seitenzahl et al. (2012) and Ciaraldi-Schoolmann et al. (2012) (see also
Section 3.1.3).

2.4 Progenitor Evolution

2.4.1 Binary Pre-Supernova evolution

Since in this work simulations of delayed detonations of Chandrasekhar-mass WDs are
carried out, the discussion of the evolution of the progenitor system focuses on these
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systems. White dwarfs are born on average with a mass of about 0.6 M� (Homeier et al.,
1998), which means that they have to undergo a binary evolution phase in order to
reach the Chandrasekhar mass of about 1.4 M�, as WDs in single systems are stable and
simply cool down due to radiation.

The WD grows to the Chandrasekhar mass by accreting material from a non-degenerate
companion star (Whelan & Iben, 1973; Nomoto, 1982), which can be a main-sequence
star, a helium star, a subgiant or a giant. For a detailed discussion and more references,
see Hillebrandt & Niemeyer (2000). The problem with this model is that most of the
accretion rates do not lead to a stable mass transfer. If the accretion rate of hydrogen
is too low, nova eruptions may occur, blasting away more mass than accreted before.
If the accretion rate is higher, a degenerate layer of helium forms at the surface of the
WD, which might detonate and thus give rise to novae. At an even higher accretion rate,
hydrogen and helium may burn hydrostatically to a C/O mixture, which means that
stable mass transfer is established. But some of these systems might also correspond to
symbiotic or cataclysmic binaries (Hillebrandt & Niemeyer, 2000). If the accretion rate is
too high, a H-rich envelope would form around the WD, whose existence is not seen in
spectra of SNe Ia.

One can thus conclude that there is only a narrow parameter space of mass accretion
allowing for stable burning of the accreted matter, hence increasing the WD mass to the
Chandrasekhar mass. This parameter space might be larger for very low metallicities, as
a recent study by Shen & Bildsten (2007) suggests.

Binary systems being home to nova explosions may also be SN Ia progenitor systems
(e.g. Moore & Bildsten, 2012). A nova is a thermonuclear runaway in the accreted H shell
of a WD and may occur in short and long period binaries. The short period binaries may
be cataclysmic variables, where the mass transfer is achieved by Roche lobe overflow of
the companion star. The long period binaries may be explained by symbiotic systems,
where the WD accretes the material from the wind of the companion star, which is
probably a red giant star (Hachisu et al., 1999). Another promising channel may be
supersoft X-ray sources (e.g. Han & Podsiadlowski, 2004).

The recent discovery of circumstellar material (CSM) in SNe Ia (e.g. in PTF11kx, Dilday
et al., 2012; or from Na lines, Sternberg et al., 2011) supports the SD scenario, as CSM is
not supposed to be present in DD systems.

2.4.2 Pre-Ignition Phase

Prior to ignition, when the WD nearly reaches the Chandrasekhar mass, the accretion
increases the temperature and density of the WD until carbon fusion begins (Hillebrandt
& Niemeyer, 2000; Lesaffre et al., 2006). In the beginning, the carbon burning rates will
be slow and thus the fusion energy can be transported away by neutrino and radiative
cooling. But as the temperature further rises, the carbon reaction rate is enhanced and a
convective motion is born in the core. This convective core has to grow very fast due to
the high sensitivity of the carbon burning rate, which leads to a high increase in energy
generation. This phase is called the C-flash phase (Lesaffre et al., 2006). As soon as
the convective time scale exceeds the nuclear burning time scale, the nuclear energy
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cannot be transported away from the core any longer and a thermonuclear runaway may
occur. This constitutes the onset of the explosion, where explosion models of Type Ia
supernovae begin.

Another process which is important in this phase immediately preceding the ignition
is the convective Urca process. The Urca process was first proposed by Gamow & Schoen-
berg (1941) as a source for cooling in stars. It incorporates a pair of nuclei connected by
beta decay and electron capture reactions, both emitting neutrinos/antineutrinos respec-
tively. Paczyński (1972) connected the Urca process with the convective motion in the
interior of the WD core after the onset of carbon burning. As the treatment of convection
together with chemical reactions is very complex and numerically demanding, different
numerical studies have yielded different results over the years. The results from Lesaffre
et al. (2005) and Stein & Wheeler (2006) show that the convective Urca process influences
the convective motion and should be taken into account for more realistic models.

The initial models used in this work are based on Lesaffre et al. (2006). They follow
the evolution of the WD from the end of a common evelope phase to the ignition of a
thermonuclear flame. They also capture the accretion, the convective motion of the core
and the C flash. Unfortunately, numerical obstacles prevent the implementation of the
Urca process. The results concerning the WD structure just before ignition are as follows:
The convective core is carbon depleted with a central carbon mass fraction of about 0.27
to 0.40 (Lesaffre et al., 2006, Fig. 8). The mass of the convective core depends on the
central density and the ignition criterion and ranges from 0.84 M� to 1.25 M� (Lesaffre
et al., 2006, Fig. 7). Due to the convection in the core, the composition is homogeneous in
the core. In the outer layer of accreted material the carbon mass fraction is 0.5, because
this is expected from steady He burning under these conditions.

2.5 Thermodynamical Properties of WD Matter

White dwarfs are the final stage of stellar evolution for low-mass stars and because
nuclear burning has ceased, only the degeneracy pressure of the electrons stabilizes the
white dwarf against gravitational collapse. This leads to a high compression and central
densities in the WD of about 109 g/cm3. The temperature in the beginning depend on the
evolution of the object but are below ∼ 109 K. During the explosion, nuclear burning can
increase the temperature up to 1010 K. In order to compute thermodynamical properties
at these extreme conditions, the equation of state has to take into account several
contributions and is dominated by the electron gas, which is arbitrarily degenerate and
relativistic. Other contributions can be attributed to the photon gas, the nuclei and
electron-positron pair creation. These contributions have to be valid over a wide range
of temperatures and densities.

The thermodynamic quantities are determined by specifying the temperature T, the
density ρ, the mean number of nucleons per isotope A = (∑ Yi)

−1 and the mean charge
per isotope Z = A ∑ ZiYi. If instead of temperature, the energy is given—as in most
hydrodynamical simulations—the temperature can be computed iteratively.

Following Timmes & Arnett (1999), the total specific pressure and energy can be
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expressed as a sum over the individual contributions,

peos = pel + ppos + pnuc + prad,

eeos = eel + epos + enuc + erad,
(2.36)

where the subscripts denote the contributions from electrons, positrons, nuclei and
radiation, in this order.

The contributions from electrons and positrons as a noninteracting Fermi gas use the
relativistic Fermi-Dirac integrals Fk(η, β), defined as

Fk(η, β) =

ˆ ∞

0

xk
√

1 + 1
2 βx

exp(x− η) + 1
dx, (2.37)

where β = kT/(mec2) is the relativity parameter and η = µ/kT the normalized chemical
potential (k: Boltzmann constant, me: electron rest mass, c: vacuum speed of light). The
contributions to pressure and energy due to free electrons and positrons are (Timmes &
Arnett, 1999)

pel =
16π
√

2
3h3 m4

ec5β5/2
[

F3/2(η, β) +
1
2

βF5/2(η, β)

]
,

eel =
8π
√

2
ρh3 m4

ec5β5/2 [F3/2(η, β) + βF5/2(η, β)] ,

ppos =
16π
√

2
3h3 m4

ec5β5/2
[

F3/2(−η − 2
β

, β) +
1
2

βF5/2(−η − 2
β

, β)

]
,

epos =
8π
√

2
ρh3 m4

ec5β5/2
[

F3/2(−η − 2
β

, β) + βF5/2(−η − 2
β

, β)

]
+

2mec2npos

ρ
,

(2.38)

where the number density of free positrons npos is given by

npos =
8π
√

2
h3 m3

ec3β3/2
[

F3/2(−η − 2
β

, β) + βF5/2(−η − 2
β

, β)

]
. (2.39)

Due to the high densities, the nuclei and the electron gas can be assumed to be in
thermal equilibrium, allowing to describe the completely ionized nuclei as a Maxwell-
Boltzmann gas. The contribution to specific energy and pressure can be expressed
as

enuc =
3
2

kTNA
1
A

, pnuc = kTNAρ
1
A

, (2.40)

where NA denotes Avogadro’s constant.
The photons are assumed to follow a black-body spectrum in local thermodynamic

equilibrium, thus yielding the contributions according to the Stefan-Boltzmann law,

erad =
4σ

ρc
T4, prad =

4σ

3c
T4, (2.41)

where σ is the Stefan-Boltzmann constant.
As the computation of these formulae is numerically too expensive, in simulations

pre-tabulated values are used combined with an interpolation scheme. Details on the
numerical implementation are given in Section 3.1.3.
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3 Numerical Methods

3.1 Hydrodynamical Simulations

The key challenge in simulating thermonuclear supernova explosions is—similarly to
other astrophysical phenomena—the multi-scale character of the problem. Firstly, the
size of the WD progenitor is of the order of 108 cm, whereas the flame size of the
deflagration for example is of the order of 10−4 cm (cf. Timmes & Woosley, 1992). As
the microscopic processes of viscosity, heat conduction and chemical diffusion are very
important for the propagation of deflagrations, but cannot be resolved, an approximate
treatment for the flame has to be applied. In our simulations, we use the level set method
(see Section 3.1.2)—treating the flame as a discontinuity given by the zero level set of a
signed distance function.

Secondly, a large discrepancy exists between the time scales of nuclear burning
and hydrodynamical evolution. In order to avoid resolving the shortest timescales, a
simplified set of nuclear reactions is introduced as occurring instantaneously at the
flame discontinuity . This is combined with a postprocessing step yielding the detailed
nucleosynthetic abundances.

As pointed out by Müller (1998), one tries to solve the Euler equations instead of
the Navier-Stokes equations, neglecting viscosity. However, some kind of numerical
viscosity is introduced intrinsically through discretization of the Euler equations and
this viscosity behaves differently from the one present in the Navier-Stokes equations.

3.1.1 Discretization of the Euler Equations

A very good introduction to the discretization of the Euler equations and to hyperbolic
systems of conservation laws in general is given by LeVeque (1998).

In order to solve a differential equation numerically, a discretization of the domain of
the differential equation is necessary. In the case of our partial differential equations,
a computational grid is introduced in the spatial and temporal variables. For the sake
of simplicity, we consider here an equidistant spacing h = ∆x = ∆y = ∆z in space and
k = ∆t in time. Then the value of a vector of m physical quantities q(x, y, z, t) ∈ Rm is
denoted by

qn
ijk = q(xi, yj, zk, tn), (3.1)

where the upper index denotes the temporal coordinate and the lower indices denote
the spatial coordinates.

A more natural method of solving balance equations, which in the absence of sources
are conservation laws, are finite volume methods. In these methods, the value qn

i is
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interpreted as an average of the function q(x, t) over the finite interval Ci = [xi−1/2, xi+1/2]

and not as an approximation to the function value itself:

qn
i =

1
h

ˆ
Ci

q(x, tn)dx (3.2)

This can now be applied to the integral form of the balance equation (2.4) (without
source term, for simplicity), taken over one interval and integrated over one time step,

ˆ
Ci

(q(x, tn+1)− q(x, tn)) dx = −
ˆ tn+1

tn

[j(q(xi+1, t))− j(q(xi, t))] dt. (3.3)

Plugging in Equation (3.2), this can be cast in the flux-differencing form

qn+1
i = qn

i −
k
h
(

Jn
i+1 − Jn

i
)

, (3.4)

where Jn
i is an approximation to the flux integral

Jn
i ≈

1
k

ˆ tn+1

tn

j(q(xi, t))dt. (3.5)

Equation (3.4) is now better suited to the problem of solving conservation laws. The
change of q in a cell is only mediated by the flux to the neighbouring cells, which ensures
exact conservation of the quantity on the numerical grid.

A popular method for solving Equation (3.4) in the case of the Euler equations is
Godunov’s method. The idea is that the values qn at some time tn are interpreted as values
of a piecewise constant function q̃n(x, tn). Now the flux function is defined using this
piecewise constant function,

Jn
i =

1
k

ˆ tn+1

tn

j(q̃n(xi, t))dt. (3.6)

The solution to (3.6) consists now of solving the Riemann problem (for details on the
Riemann problem, see e.g. LeVeque, 1998) at the interfaces of all grid cells separately, if
the time step k is small enough: the fact that the solution to the Riemann problem is a
similarity solution, i.e. it is constant along rays x/t, means that the value of q̃n along the
cell interface is constant—as long as no interference from neighbouring interfaces occurs.
This results in the CFL criterium (named after Courant, Friedrichs, Lewy, see Courant
et al., 1928) for the time step size

∆t ≤ ∆x
smax

, (3.7)

where smax is the maximum wave speed from the Riemann problem.
In order to compute the fluxes, an appropriate Riemann solver has to be employed.

Moreover, there are also more elaborate schemes with a higher spatial order, using e.g.
parabolae for the interpolation of the function q. The details of the numerical scheme
and Riemann solver used in our supernova code Leafs are given in Section 3.1.3.
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3.1 Hydrodynamical Simulations

3.1.2 Level Set Method

The level set method was introduced by Osher & Sethian (1988) in order to track hydrody-
namical discontinuities. The basic idea of the level set method is that the front geometry
is given by the set where a certain scalar function has the value 0. If the scalar function
has an n-dimensional argument, this yields the front geometry as a (n− 1)-dimensional
hypersurface. The method was extended to flame fronts (e.g. deflagrations and detona-
tions) by Smiljanovski et al. (1997). This extension allows the front to propagate in its
normal direction in addition to the hydrodynamical advection.

The presentation here follows Reinecke et al. (1999b). Given the level set function
G : Rn → R in n dimensions, the front geometry is expressed as the (n− 1)-dimensional
hypersurface Γ,

Γ = {r | G(r) = 0}. (3.8)

Equation (3.8) does not completely fix the function G; additional constraints can be
imposed. We request G to be a distance function, i.e. |∇G(r)| = 1. This implies that the
level set function G is a smooth function, which has numerical advantages. This can be
reached by requesting Now an equation has to be found governing the evolution of the
level set function G in time. This equation must combine the hydrodynamical evolution
and the additional propagation in the normal direction. Thus the total propagation
velocity of a point P attached to the front is best split according to

ẋP = vu + sun, (3.9)

where vu is the velocity of the unburnt material, su the propagation velocity of the front
and n = ∇G/|∇G| the normal vector to the front. At a point P attached to the front, the
level set function does not change with respect to P:(

dG(r, t)
dt

)
P
= ∂tG(xP, t) + ẋP · ∇G = 0 (3.10)

This yields, combined with Equation (3.9) the equation for the temporal evolution of the
level set function G,

∂tG = −(vu + sun) · ∇G. (3.11)

Equation (3.11) is now solved in a split operator approach: the first part is due to
advection with the fluid motion. Hence, the level set function G can be advected as a
passive scalar in the PROMETHEUS implementation, similar to a chemical species. The
second part is calculated separately using an upwind formula for the gradient and a
pre-defined table or formula for the propagation speed su (for details, see Reinecke et al.,
1999b).

As Equation (3.11) is strictly valid only at the front itself, it can only be applied in the
vicinity of the front. Farther away from the front, a different numerical method has to
be applied in order to ensure the distance function property of G. In each time step, a
re-initialization of the level set function is applied in a pseudo-time approach (Sussman
et al., 1994),

∂G
∂τ

=
G

|G|+ ε
(1− |∇G|) , (3.12)
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which essentially restores the distance function property of G (ε is an empirical parameter
with a value in the order of the grid cell length). To avoid an artificial movement of
the front, cells located in a belt of about three cells around the front are left nearly
unchanged using a non-linear weighting function (for details, see Reinecke et al., 1999b).

The way nuclear reactions are treated is of central importance for this work, because we
study how different initial compositions affect nuclear burning. In the level set approach,
the nuclear burning is both supposed to happen instantaneously at the burning front,
which is a discontinuity given by the zero level set of G. This approximation is very good
especially for deflagrations, as deflagration flames are very thin under the conditions
given here (on the order of 10−4 cm for a density of 1× 109 g/cm3, cf. Timmes & Woosley,
1992). For detonations, the approximation is still good at high densities, where the flame
width is small. But at lower densities, the flame width grows larger; for Si burning
e.g. larger than the size of the WD (Gamezo et al., 1999). Consequently, on one hand,
incomplete burning to intermediate mass elements or even only oxygen results. On the
other hand, the internal wave structure of the detonation front should be taken into
account, which is very complex and shows a cellular pattern in more than one dimension
(Gamezo et al., 1999). This cellular pattern can affect the nucleosynthetic outcome and
lead to an inhomogeneous distribution of the burnt material. But since the burning
front is approximated by a discontinuity, these effects have to be neglected. Instead,
the final outcome of the burning is taken from tables relating it to the density of the
unburnt material. The burning tables with the abundances have to be created before
the actual simulations. The burning front propagation velocity is also taken from a
pre-created table for detonations and from a fit formula from Timmes & Woosley (1992)
for deflagrations.

In each cell cut by the front, the volume fraction α of the unburnt fuel has to be
determined in order to know how much fuel should be burned. In two dimensions,
the level set function G, which is given in the center of the cell, is interpolated to the
corners. Then the roots of this function are obtained by linear interpolation. Here,
a topological ambiguity may occur, which is solved by taking the average of the two
possible configurations (compare Reinecke et al., 1999b, Fig. 2). The fraction α is finally
given as the area of the cell where G < 0.

As the number of topological ambiguities increases in three dimensions, a different
method is chosen here (Reinecke, 2001). First, an average length r in the cell with indices
(i, j, k) is defined,

r = (∆xi∆yj∆zk)
1/3. (3.13)

Now the volume fraction αijk of unburnt material is computed by comparing with the
value of Gijk, using the distance function property,

αijk =


1 , Gijk < −r

0 , Gijk > r
1
2

(
1− Gijk

r

)
otherwise.

(3.14)

This value of α determines now the conversion of fuel to ashes and thus, the energy
release. The new fractions of fuel X′fuel and ashes X′ashes are updated from the old
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3.1 Hydrodynamical Simulations

fractions Xfuel and Xashes according to (Reinecke et al., 1999b)

X′ashes = max (1− α, Xashes) ,

X′fuel = 1− X′ashes.
(3.15)

The use of the maximum operator in Equation (3.15) prevents “reverse burning” from
fuel to ashes. This could otherwise occur due to discretization errors (Reinecke et al.,
1999b). The resulting change in the total energy etot caused by the difference in binding
energies of fuel and ashes is given by

e′tot = etot + q(X′ashes − Xashes) (3.16)

where q is the reaction q value, given by the difference in binding energies of the
composition.

3.1.3 LEAFS

The code used for computing the hydrodynamical simulations of SNe Ia in this work
is the Leafs code (LEvelset based Astrophysical Flame Simulations), developed at the
Max Planck Institute for Astrophysics in Garching. This program has undergone a major
re-implementation by M. Reinecke which is described very well in his doctoral thesis
(Reinecke, 2001), as well as in Reinecke et al. (1999a) and Reinecke et al. (2002a).

The code uses the Eulerian version of the piecewise parabolic method (PPM), developed by
Colella & Woodward (1984), in the PROMETHEUS implementation by Fryxell et al. (1989).
PPM is a finite volume scheme similar to Godunov’s method (see standard textbooks, e.g.
LeVeque (1998) and Section 3.1.1), but uses parabolae for the reconstruction. This allows
for a better representation of smooth gradients on the one hand and discontinuities on
the other hand. Discontinuities, e.g. hydrodynamical shocks, are typically smeared out
over three cells, rendering them quite sharp compared to other numerical schemes. In
order to solve the multidimensional problem, dimensional splitting is applied, where
the hydrodynamical equations are solved consequently for each direction. In order to
preserve the symmetry of the scheme, the hydrodynamical sweeps are done twice in
each time step, once in reverse order.

The Riemann problem is solved according to the method presented in Colella & Glaz
(1985). Our approximate Riemann solver is capable of using a general convex equation
of state—a crucial prerequisite for using it in the context of WD matter.

In order for the numerical scheme to be stable, the size of the time step has to fulfill
the CFL criterion (3.7). As the speeds occurring in the solution of the Riemann problem
are not easily available in the code, the criterion for determining the time step ∆t uses
the local velocity in the cell u and the sound speed cs:

∆t = CCFL

(
|vx|
∆x

+

∣∣vy
∣∣

∆y
+
|vz|
∆z

+ cs

√
1

(∆x)2 +
1

(∆y)2 +
1

(∆z)2

)−1

. (3.17)

For two dimensions, the terms containing z are simply omitted. In order to ensure the
stability of the system, the additional factor CCFL is set to 0.8.
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The equation of state used in the code is based on the Timmes equation of state
(Timmes & Swesty, 2000) and includes contributions from an arbitrarily degenerate and
relativistic electron-positron gas, a photon gas and an ideal Maxwell-Boltzmann gas of
ions (compare Section 2.5). In order to speed up the computations—as the equation of
state is the most expensive operation in the code in total—a simple bilinear interpolation
is used instead of the biquintic interpolation proposed in Timmes & Swesty (2000).

Because of the large difference in scales, the deflagration and detonation burning
fronts are treated as discontinuities with the level set approach (see Section 3.1.2). It
is used as described by Reinecke et al. (1999b). Since the “complete implementation”
mentioned in there has serious numerical difficulties, the “passive implementation” is
used. The technical difficulties of the “complete implementation” occurring in SN Ia
simulations are in part due to the degenerate equation of state and in part due to the
errors in finding the volume fraction α of unburnt volume in a cell. This problem is
even more serious in three dimensions, as several topological ambiguities complicate the
computation of α.

In order to track the nucleosynthesis, in principle a nuclear network (compare Sec-
tion 2.2.1) has to be included. But as this is computationally very expensive, a simple
approach is chosen, as introduced by Reinecke et al. (2002a). The chemical composition
is simplified and includes five species, namely α particles, 12C, 16O, “Mg”, representing
intermediate mass elements (IME), and “Ni”, representing iron group elements (IGE).
Directly behind the burning front, the composition of the volume fraction 1− α, which is
converted from fuel to ashes, is given by a table depending on the density of the unburnt
material and on the initial composition of the cell. The table consists of entries equidis-
tant in the logarithm of the density and the carbon mass fraction. Bilinear interpolation
in these quantities is used to compute the final composition, which consists of C, O, IME
and IGE. The fraction of α particles is determined in an additional step according to a
table in order to account for the shift in binding energies in NSE (see Section 3.2.3).

The density which is used for looking up the abundances and propagation speeds
is not unambiguously defined due to numerical reasons. As the burning fronts are
smeared out over about three cells (a consequence of the PPM scheme), several methods
can be used to estimate the burning density of the fuel. For deflagrations, the burning
density is taken to be the local density, except if some neighbouring cell with a high fuel
content exists with a higher density. This is a reasonable approximation as the density
drop at the front is not too high and since this method seems to reduce the scatter
occurring in the calibration of the abundance tables (Section 4.1.2; I. Seitenzahl, private
communication). For detonations, this approximation is not reasonable, as a spike in
the density is present at the location of the level set. One possibility is to look into cells
in front of the smeared-out shock. A caveat of this method, however, is that the burning
density is underestimated especially in the outer cells with a steep density gradient.
Therefore, the burning density is frozen approximately four cells in front of the zero
level set of the level set function and then advected as a passive scalar. This ensures that
the effects of compression are avoided. The advection of the frozen burning density with
the fluid flow is necessary especially in conjunction with the moving grid (see below),
in order to have the right burning density passed to the detonation wave front.
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The computational grid used in the discretization of the Euler equations was static
in the simulations of Reinecke et al. (1999a, 2002a). It consisted of 256× 256 grid cells
and contained an equidistant inner part of 226× 226 cells and exponentially growing
cells in the outer part. As the WD expands rather fast because of the thermonuclear
burning, this static grid allows tracking the expanding ejecta only up to 1.5 s. Another
problem with this approach is that the flame is resolved only very coarsely at later times.
This was improved by the “co-expanding uniform grid approach”, introduced in Röpke
(2005) and applied to a set of 3D Chandrasekhar mass deflagration models in Röpke
& Hillebrandt (2005). The technique is based on the work of Winkler et al. (1984) and
Müller (1994) and introduces a grid moving with a velocity ugrid following Röpke (2005).
This point of view is more general than Lagrangian or Eulerian coordinates, which can
be obtained by setting ugrid = u and ugrid = 0, respectively. If now d

dt denotes the time
derivative in the grid frame, the relation to the Eulerian derivative ∂t is similar to the
Lagrangian case,

d
dt

q = ∂tq + ugrid · ∇q. (3.18)

Using the moving grid transport theorem for a grid cell with volume Vgrid (Röpke, 2005),

d
dt

˚
Vgrid

q dVgrid =

˚
Vgrid

(
∂tq +∇ · (qugrid)

)
dVgrid, (3.19)

an integral form of the balance equation (2.5) is obtained,

d
dt

˚
Vgrid

q dVgrid = −
‹

∂Vgrid

qurel · dSgrid +

˚
Vgrid

sq dVgrid, (3.20)

where urel = u− ugrid is the relative velocity. This is very similar to the usual balance
equation in integral form (2.4) with the flux jq = qu being replaced by qurel. Equa-
tion (3.20) can now be discretized in the same way as the usual equation (2.4).

Using the expanding grid, Röpke (2005) was able to follow the expansion for 10 s and
verified that the deviation from homologous expansion is rather small, below 10% for
most parts of the star (cf. Röpke, 2005, Fig. 10). A further improvement to the approach
was introduced in Röpke et al. (2006b), the use of a moving hybrid grid. This grid consists
of two sub-grids and combines an equidistant inner grid and an exponentially spaced
outer grid with the moving grid technique. In the beginning of the simulations, both
grids move separately: the inner grid tracks the outer border of the deflagration flame
and the outer grid tracks the expansion of the WD. As the flame grows in size, cells
from the outer grid are merged into the inner grid when the sizes match. Finally, the
grid is nearly uniform everywhere and tracks the expansion of the WD. This can also be
seen in Figure 3.1: the left plot shows the grid in the beginning, which is equidistant in
the inner part and exponentially spaced in the outer part. The right plot shows the grid
in the end, where a nearly equidistant state is reached. This method allows for a high
resolution in the inner part, thus resolving the flame much better than in the uniform
moving grid approach. Moreover, the implementation of the new subgrid scale model
(see below) is based on an equidistant grid. At the same time, the expansion of the WD
can be followed for much longer time scales up to 100 s.
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As the burnt matter behind the deflagration front has a lower density than the unburnt
fuel, it is subject to the Rayleigh-Taylor instability and consequently also to the Kelvin-
Helmholtz instability (compare Section 2.1.3). If one now compares a corresponding
length scale l and velocity scale u to the viscosity ν, which is similar to liquids or gases
on earth, the corresponding Reynolds number

Re =
lu
ν

(3.21)

can be as large as 5× 1013 (Woosley et al., 2009). This means that the flow is highly
turbulent.

As the numerical method given here can only resolve large scales, a model for the
propagation of the front and the dissipation of energy on unresolved scales, a subgrid scale
model (SGS model), has to be employed (Niemeyer & Hillebrandt, 1995; Schmidt et al.,
2006a,b). The entire simulations are conducted in the spirit of large eddy simulations
(LES). But instead of implementing the turbulent viscosity in the hydrodynamical scheme,
the intrinsic numerical viscosity of the PPM scheme is used and the effect of turbulence
is modeled through a turbulent energy.

The turbulent combustion regime which applies to most of the explosive burning
is the so called flamelet regime (e.g. Röpke & Schmidt, 2009). In this regime, the flame
surface is wrinkled by the turbulent structure of the flow. But as the Gibson length—the
length scale of the smallest eddies—is larger than the flame width, the microscopic
structure of the front is not altered by the turbulent flow. Thus, the propagation of the
front is governed by the turbulent motion (Damköhler, 1940).
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Figure 3.1 | Moving hybrid grid. In this figure, the computational grid at the beginning of a
simulation (left) and at the end of a simulation (right) is compared. Shown here is the x-y
plane of a full star 3D simulation with 5123 grid cells. For better visualization, only every 16th
grid border is shown. Since the grid is symmetrical in every direction, the grid cell borders in
z direction are the same as in x and y.
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A first SGS model was introduced by Niemeyer & Hillebrandt (1995). As the numerical
scheme introduces an artificial dissipation at the length scale ∆, the grid spacing, the
processes below this length scale remain unresolved. This SGS model tries to model
the energy dissipation through turbulent motion on length scales below ∆ down to the
Gibson scale (see also Section 2.3.4). As the flame surface is enlarged to a fractal surface
of fractal dimension D ≈ 2.3, the burning rate and propagation velocity are enhanced
dramatically compared to laminar burning. The propagation velocity s of the front in
the model of Niemeyer & Hillebrandt (1995) is given by

s = max(sl, qsgs), (3.22)

where sl is the laminar burning speed (see Equation (2.34) and Timmes & Woosley, 1992)
and qsgs the size of SGS velocity fluctuations.

A more elaborate turbulence SGS model was proposed and implemented by Schmidt
et al. (2006a,b). As this model is only implemented in three dimensions, the old SGS
model by Niemeyer & Hillebrandt (1995) is still in use for the 2D simulations. The new
model uses a filtering approach devised by Germano (1992), where the high frequency
parts of the Fourier representation of all quantities are filtered out in order to represent
the numerical quantities. The reason is that this part of the spectrum above the critical
wave number kc = π/∆ (∆: grid resolution) is not present in the numerical representation
of the quantity. This filtering leads to a set of equations needing closure relations that
are determined locally. The flame propagation speed s is given in this model as

s =
(

s2
l + Ctq2

sgs

)1/2
, (3.23)

with sl being the same as in Equation (3.22) and qsgs being the size of the velocity
fluctuations in the new SGS model. The turbulent burning coefficient Ct = 4/3 is set
according to Schmidt et al. (2006b). Equation (3.23) allows for a smooth transition
between the laminar burning regime and the turbulence dominated flamelet regime:
For small turbulent velocity fluctuations the flame propagates with the laminar burning
speed s ≈ sl. For large SGS velocity fluctuations, the propagation speed is s ≈ 2qsgs/

√
3

and dominated by the turbulent energy.
In order to trigger a DDT, which is essential for delayed detonation models, the

criterion described in Ciaraldi-Schoolmann et al. (2012) (see also Seitenzahl et al., 2012)
is employed in our three-dimensional simulations. The flame surface for cells with a
certain fuel and density range is estimated by assuming a fractal surface with fractal
dimension D = 2.36. Using this flame surface, an effective detonation flame surface is
calulated by multiplying the flame surface by the propability of high velocity fluctuations
& 108 cm/s to occur. If this effective surface exceeds a critical value calculated using
a critical length for the detonation initiation (Seitenzahl et al., 2009) for a time longer
than half an eddy turnover time, detonations are initiated. The number of initiated
detonations is given by the ratio of the two flame surfaces. The detonations are initiated
in the cells with the highest velocity fluctuations.
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3.2 Nuclear Reactions

3.2.1 Nuclear Reaction Network

In order to solve a nuclear reaction network, Equations (2.12), a system of non-linear
ordinary differential equations (ODEs), have to be solved. These equations turn out
to be stiff. It is still somewhat unclear how to mathematically define stiffness, but a
good overview of the problem is given in Higham & Trefethen (1993). In a nuclear
reaction network, the stiffness is caused by the large discrepancies in the timescales of
the different reaction rates.

When integrating a set of ODEs with an explicit method, the size of the time step is
usually determined by requesting a certain accuracy to be reached. If now the constraint
on the time step does not emerge from accuracy, but from stability of the numerical
solution, the system of ODEs is said to be stiff—at least in a heuristic sense. In order to lift
this constraint on the time step, implicit methods can be used. Implicit methods evaluate
the right hand side of the set of ODEs at the new time value—as opposed to explicit
methods—hence resulting in an implicit equation for the function value at the new time
value (see also the discussion in Müller, 1998). Examples for implicit algorithms suited
for integrating stiff ODEs are the backward Euler method or the algorithm described by
Bader & Deuflhard (1983), which employs a semi-implicit midpoint rule.

3.2.2 Postprocessing

It is computationally too costly to calculate the detailed nucleosynthetic abundances
coupled to hydrodynamics. Thus, hydrodynamical simulations are carried out with
a simplified composition ensuring the energy conversion by the reactions is taken
into account. This can be implemented either by coupling a small network to the
hydrodynamics capturing the key reactions (as suggested in Müller, 1998) or by using
the level set method, where the chemical reactions happen instantaneously at the burning
front (see Section 3.1).

After the hydrodynamical simulation is finished, the detailed nucleosynthesis is com-
puted in an additional postprocessing step. This was already done by Thielemann et al.
(1986), who investigated detailed nucleosynthesis for Lagrangian mass shells in one
dimensional deflagration models of SNe Ia. In more than one dimension, Nagataki et al.
(1997) first used the concept of tracer particles in the field of Type II supernovae. As
the main energy source for core collapse supernovae is gravitational binding energy,
they neglected the impact of the nucleosynthesis on hydrodynamics and calculated the
nucleosynthesis afterwards. To this end, “test particles” were included in the simulation
following the hydrodynamical flow and recording density and temperature. These
particles represent a certain mass of the star, when calculating the nucleosynthesis
results in the postprocessing, but are just passively advected, having no impact on
gravity or hydrodynamics. In the Lagrangian frame of these tracer particles, the only
change in the specific abundances is caused by reactions. Thus, solving Equation (2.12)
on the thermodynamic trajectory of a tracer particle yields the nucleosynthetic abun-

42



3.2 Nuclear Reactions

dances, i.e. the final abundances of that particle. Information about the nucleosynthesis
of the entire explosion is recovered by summing over a sufficient number of tracer
particles.

The tracer particle method used in our simulations is based on the work of Travaglio
et al. (2004). A certain number of “marker particles” (this term was used in Travaglio
et al., 2004) is distributed equidistantly in the mass coordinate M(r), in the azimuthal
angle φ and in cos(θ) and passively advected during the hydrodynamical simulation. As
in the hydrodynamical simulation the temperature is derived from the internal energy,
which is directly computed, the temperature is re-computed from the energy also in the
postprocessing step. The nuclear reaction network was implemented by F.-K. Thielemann
and is described in more detail in Thielemann et al. (1996) and Iwamoto et al. (1999). The
method used in this nuclear network for solving equations (2.12) is a backward Euler
algorithm. Newer developments are the inclusion of new weak rates from Martínez-
Pinedo et al. (2000) and Langanke & Martínez-Pinedo (2003), as described in Brachwitz
et al. (2000) and Thielemann et al. (2003). The postprocessing algorithm is explained
in Röpke et al. (2006a) and applies to the current simulations with the difference that
the minimum temperature for actually using the network was lowered from 2× 109 K
to 4× 108 K. The distribution of the tracer particles follows the new scheme of variable
tracer masses introduced in Seitenzahl et al. (2010). The radially varying mass of the
tracer particles allows for a better resolution in the outer layers of the WD, where the
density is low, but the density gradient is rather steep.

In their study of three dimensional deflagrations, Röpke et al. (2006a) treated the
metallicity of the progenitor as an additional parameter in order to examine the effect
on the nucleosynthetic outcome. As synthetic spectra are regularly calculated from our
models now, the detailed abundance structure especially in the outer layers must be
accurately computed. Therefore, the detailed chemical composition of the Sun given
in Asplund et al. (2009) is taken as initial metallicity. In order to take into account the
metallicity of carbon and oxygen of the Sun, their mass fractions are added to the mass
fraction of 22Ne. Then the sum of the mass fractions of all elements beside carbon and
oxygen (about 0.018 for solar composition) is subtracted from the 12C mass fraction in
order to ensure particle conservation.

The distribution of tracer particles in 2D simulations is chosen in 256 radial and 160
angular zones, resulting in ∼ 40 900 tracer particles (depending on the exact initial
model), using the algorithm of Seitenzahl et al. (2010). In 3D simulations, 100 tracer
particles are used in every direction (distributed equidistantly in M(r), φ, and cos(θ)),
thus resulting in a total number of ∼ 100 000 tracer particles (again depending on the
exact initial model).

3.2.3 Nuclear Statistical Equilibrium

In SNe Ia models including an initial deflagration phase, nuclear statistical equilibrium
(NSE) holds at the high densities and temperatures in the deflagration ashes. In the
Leafs code this is modeled by adapting the proportion of IGE and α particles according
to a table provided by H.-Th. Janka (Reinecke et al., 2002a).
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The nuclear network used in the postprocessing step includes a NSE solver that is
used at temperatures above 6× 109 K. The nuclear reaction network Yann (Yet another
nuclear network, by R. Pakmor and P. Edelmann, Pakmor et al., 2012a), is used to
compute the abundances at high densities while calculating the detonation propagation
speeds (Section 3.3). This nuclear network also includes a NSE solver which is employed
at temperatures above 6× 109 K. The reaction rates in Yann are taken from the latest
release of the REACLIB data base (Rauscher & Thielemann, 2000) and the weak rates
from Langanke & Martínez-Pinedo (2001). In order to solve the nuclear network equation,
a semi-implicit midpoint rule after Bader & Deuflhard (1983) is employed. In order to
compute the detailed NSE composition, equations (2.16), (2.18) and (2.19) have to be
solved. This is done using a Newton-Raphson method solving for µp and µn at a given
density and temperature. The detailed abundances can then be computed from these
quantitites.

3.3 Iterative Computation of Abundance Tables

In order to create the tables needed by the level set method, an iterative procedure
described by Fink et al. (2010) is employed (Figure 3.2). This iterative calibration is
carried out separately for each burning mode—deflagration and detonation. First,
a hydrodynamical simulation with an initial table is carried out. This initial table
is constructed in a way that at almost all densities the fuel is burned to NSE, thus
overestimating the reaction Q value. The objective of the iterative scheme now is
to converge to a Q value table—and an abundance table, respectively—from above.

Initial abundance
tables

Hydrodynamical simulation
(pure deflagration/detonation)

Nucleosynthetic
postprocessing

Computation of new abun-
dance table (and velocity table
for detonations)

Figure 3.2 | Iterative calibration scheme. For the first run, an initial abundance table with a
high reaction Q value is used. Then, hydrodynamical simulations and nucleosynthetic post-
processing runs are carried out consequently. The abundance table for each hydrodynamical
simulation is computed from the last nucleosynthesis results.
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As described in Section 3.1.3, the level set method in our implementation needs an
abundance table, where the simplified chemical composition behind the level set is given
by the density of the unburnt fuel ahead of the front. Furthermore, the calibration is
done in order to consistently model the nucleosynthetic yields, which should coincide
with the simplified nucleosynthesis from the hydrodynamical simulations.

Now each step in this iterative procedure consists of three steps (Figure 3.2):

1. A hydrodynamical simulation is carried out using the abundance table from the
previous step or the initial abundance table in the first step. This simulation
includes Lagrangian tracer particles, which are advected with the flow. Until the
calibration scheme is converged, the reaction Q value table for the level set method
is (slightly) overestimated.

2. The detailed nucleosynthetic yields are computed using a postprocessing of the
advected Lagrangian tracer particles (as explained in Section 3.2.2). This step uses
only the temperature and density along the trajectories of the tracer particles.

3. In a third step, the detailed nucleosynthetic yields are used to compute a new
abundance table and also a propagation velocity table in the case of detonations.
For detonations, the nucleosythetic yields are simply calculated for each tracer,
giving the new table. For deflagrations, a binning is done in the density of the
unburnt fuel. The detonation propagation velocities at high densities are calculated
using the Yann NSE solver (Section 3.2.3).

These steps are iterated several times. The convergence of this scheme is theoretically
founded on the fact that the density of the unburnt fuel shortly before the encounter
with the burning front is not highly affected by the higher reaction Q value. As the rates
are sensitive to this density, the postprocessing will yield a smaller and more realistic Q
value. Finally, this should lead to convergence of the table.

After the sixth iteration, the changes are very small (especially for detonations, see
Section 4.1), so that convergence is supposed to be achieved. The whole iterative
calibration is carried out separately for each carbon mass fraction (from 0.2 to 0.9) and
each burning mode (deflagration and detonation) in this work (see Section 4.1).

For the deflagration calibration, the initial model is chosen to be a Chandrasekhar
mass WD with a homogeneous carbon mass fraction and an initial core density of
2.9× 109 g/cm3. Solving for the hydrostatical equilibrium outwards gives a WD with a
mass of 1.40 M� and a radius of 1857 km. The hydrodynamical simulations are carried
out in two-dimensional, axisymmetric geometry and use a grid with 512× 1024 cells,
which corresponds to a resolution of about 1 km in the inner part. The simulations
use 40897 Lagrangian tracer particles which were distributed with variable masses
according to Seitenzahl et al. (2010), improving the resolution in the outer parts with
low densities. The tracer particles are distributed uniformly in volume in a mass shell
between 1.050 M� and 1.355 M� and uniformly in mass anywhere else in the WD. This
layer was chosen in order to better resolve the nucleosynthesis in the part with a steep
density gradient.
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For the detonation calibration, a sub-Chandrasekhar mass WD is chosen because the
transition from complete burning (NSE conditions) to no burning happens at lower
densities than for deflagrations. Here, the initial core density equals 1× 108 g/cm3,
which results in a WD with a mass of 1.17 M� and a radius of 4323 km. The grid size
was chosen to be 5122, which corresponds to a resolution in the inner part of about
9 km. Because of the supersonic nature of detonation fronts, a detonation of a WD is
a one-dimensional problem if ignited centrally. Thus, a distribution of the Lagrangian
tracer particles along one line is sufficient to capture the properties of the level set.
For the calibration simulations, 200 tracer particles were placed along one line and
distributed to be equidistant in the logarithm of the density.

The detonation propagation velocity is computed in an additional step assuming a
Chapman-Jouguet detonation, where the detonation speed D is equal to the sound speed
in the unburnt material. In principle, the equilibrium sound speed (as defined in (2.33))
should be taken here. But as the used equation of state does not depend strongly on the
abundances of the individual species (only on A and Z), the equilibrium sound speed
computed with respect to the changes of A and Z usually does not show a significant
difference to the frozen sound speed. Therefore, we use the frozen sound speed for all
calculations.

In order to find the detonation speed, the Rankine-Hugoniot jump conditions, equa-
tions (2.24) and (2.25), were solved using a two dimensional Newton-Raphson method
in the density ρ and temperature T. In each step, energy and pressure were computed
again from the equation of state. The reaction Q value (∆q in Equation (2.25)) at low
densities is computed using the detailed nucleosynthesis abundances, whereas at high
densities, the NSE solver from Yann is used. In the intermediate regime, both branches
join smoothly. As pointed out by Khokhlov (1989), Gamezo et al. (1999) and Sharpe
(1999), the structure of a one dimensional, steady detonation wave in degenerate C/O
matter is of the pathological type at densities above 2× 107 g/cm3 (see also Section 2.3.2).
This is due to the Si-reaction becoming endothermic, thus causing a frozen sonic point
in the reaction zone. This leads to higher velocities and energy releases for self-sustained
pathological detonations. The propagation velocities and Q values have been calculated
for material consisting of X(12C) = X(16O) = 0.5 by Gamezo et al. (1999). Because no
values are available for different compositions—as needed in this work—and because
the changes with respect to the Chapman-Jouguet solution are smaller than about 6%
(compare Gamezo et al., 1999, Fig. 2), the pathological structure of the detonation wave-
front has not been taken into account in this work. Moreover, in the delayed detonation
scenario the detonation is triggered after the deflagration has already pre-expanded
the WD. The density range in which the conditions for a DDT are met lies roughly
between 0.5× 107 g cm−3 and 1.5× 107 g cm−3. Therefore, the largest part of the detona-
tion wave propagates at densities below 2× 107 g cm−3 and is mainly unaffected by the
pathological nature at higher densities.
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4 Results

4.1 Iterative Calibration

The iterative calibration is needed in order to generate the abundance and velocity tables
that are essential for the level set method. The calibration is carried out as described in
Section 3.3 and the results of these calibrations are presented in this section.

4.1.1 Detonations

The iterative procedure for calibrating the abundance tables has been carried out for
carbon mass fractions between 0.2 and 0.9. As an example, the abundance table is
plotted after each run in Figure 4.1 for X0(12C) = 0.5. Here the mass fractions of the
elements in the simplified chemical composition used in the levelset method are plotted
against the logarithmic density of the unburned material in front of the detonation
front. This density is taken as the density of the corresponding tracer particle when
crossing the levelset. The detailed nucleosynthesis results were matched to the simplified
composition in a way that elements with similar binding energies were summed up.
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Figure 4.1 | Abundance tables for detonation calibration with X0(12C) = 0.5. Shown is the
mass fraction of the simplified chemical composition over the logarithm of the density as
calculated from the detailed nucleosynthesis postprocessing. The table named “Run 1” is used
as input for the hydrodynamical run 2 and so on.
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The carbon mass fraction was computed from 12C, the oxygen mass fraction as the sum
over 16O and 20Ne. The mass fractions of the IGE were computed as the sum over the
elemental abundances from Ti to Mo (being the heaviest element in the network). The
mass fractions of the IME were the simply computed as the difference to 1 from all other
mass fractions.

We start out with the initial guess of burning to IGE at almost all densities, but
already after the first run, the main structure of the table emerges and changes only
slightly in the subsequent runs. One can clearly distinguish the different burning
stages: First, carbon burning begins at a density of about 1.2× 105 g cm−3. At higher
densities of about 2.0× 106 g cm−3, oxygen burning starts and finally, at densities of
about 7.5–8× 106 g cm−3, silicon burning to NSE commences.

In order to examine the convergence of this iterative procedure, a comparison of the
reaction Q value is more suitable. This Q value gives the nuclear energy disposed right
behind the detonation front and is calculated as the difference of the nuclear energy of
burned and unburned material. As the binding energy rises for higher elements up to
iron group elements, the Q value rises from zero where no burning takes place to its
maximum at full burning to NSE. An examination of the convergence of the abundance
table for X0(12C) = 0.5 is given in Figure 4.2. Here, the Q values for all iteration runs
are shown in the upper plot and the relative error of each table to its predecessor in the
lower plot. The red curve shows the sixth iteration step which is also the final iteration.
The shape of the curve after the first iteration is already very similar to that of the final
iteration. The relative error decreases over the whole density range during the iterations
and is close to 0 especially for densities above log(ρ/ g

cm3 ) = 5.4. At lower densities,
the relative error between the last iteration and its predecessor is not as small. This
is probably due to the Q value being rather small rendering the convergence of this
iterative procedure more difficult. Also, the initial guess of the abundance table is worst
in this region. But because of the Q value being rather small, the influence of this part of
the abundance table on the explosion dynamics is very limited, thus justifying the use of
the table as given by the sixth iteration. The Q value of the initial table (black line) was
chosen to lie well above the final Q value in order to ensure a convergence from above.
This works quite well already in the first iteration step.

Figure 4.2 | Detonation Q value conver-
gence. In the upper plot, the Q value
of the detonation abundance table for
X0(

12C) = 0.5 is plotted for each itera-
tion. In the lower plot, the relative er-
ror of the Q value compared to the pre-
vious run is shown. The relative error
is computed as |Qold −Qnew| /Qnew.
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Figure 4.3 | Detonation Q value comparison. In each plot, the Q value of the detonation abun-
dance table for a given carbon mass fraction is compared for the subsequent calibration runs.
For each carbon mass fraction from 0.2 to 0.9, the Q value is plotted against the density of the
unburned material.
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Figure 4.4 | Final detonation abundance tables. Each plot shows the abundance table for the
corresponding initial carbon mass fraction ranging from 0.2 to 0.9. Plotted are the mass
fractions of the simplified composition used by the levelset method against the logarithm of
the density of the unburned fuel.
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A comparison of the Q value tables of the separate iteration runs for carbon mass
fractions from 0.2 to 0.9 is shown in Figure 4.3. The relative errors of the Q values are
not shown here as they are similar to the case X0(12C) = 0.5 (see Figure 4.2). The tables
behave very similarly for the separate carbon mass fractions and reasonable convergence
can be assumed in all cases in the important density range.

The final abundance tables for the detonation calibration are given in Figure 4.4.
Shown are the mass fractions of the simplified chemical composition used by the levelset
method. The abundance tables share a similar overall shape with clearly separated
transitions to the distinct burning stages: carbon burning, oxygen burning and silicon
burning. The most noticeable difference in the abundance tables can be seen for the
plateau emerging after the transition to carbon burning, with the logarithm of the density
roughly being between 5.5 and 6.5. This plateau rises for higher initial carbon mass
fractions, meaning the carbon burning produces higher amounts of intermediate mass
elements at the same initial density for higher carbon mass fractions. On the one hand
this affects the chemical outcome in the explosion process. On the other hand this raises
the Q value rather strongly for higher carbon mass fractions especially in this region.
Above the transition to oxygen burning—at a logarithmic density of about 6.5—the
shape remains quite similar for all carbon mass fractions, albeit the transition to silicon
burning shifts slightly to lower densities for higher carbon mass fractions.

The impact of the initial carbon mass fraction on the Q value table is threefold, as
displays Figure 4.5 A:

1. The global reaction Q value rises with rising initial carbon mass fraction. This can
be explained by the different binding energies of carbon and oxygen: The binding
energy of carbon is lower than that of oxygen, resulting in a higher difference to
the burning products.Hence, a higher carbon abundance in the fuel leads to more
nuclear energy being released during the reaction—thus to a higher Q value.
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Figure 4.5 | Comparison of final detonation tables. Plotted are the final Q values (A) and
detonation propagation velocities (B) for different carbon mass fractions against the density of
the unburned material. The transition zones to the different burning stages—onset of carbon,
oxygen and silicon burning—are marked in gray.
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2. The increase in the Q value above the carbon burning threshold until the onset of
oxygen burning is higher than the average increase. As stated above (also compare
Figure 4.4), a higher production of intermediate mass elements is encountered
for higher carbon mass fractions in this density range, consequently raising the Q
value.

3. The transitions to the oxygen and silicon burning stages—marked in gray in
Figure 4.5 A—shift to lower densities with higher carbon mass fractions. The
transition to the carbon burning stage stays nearly constant. The shift of the oxygen
and silicon burning threshold combined with the higher Q value for higher carbon
mass fractions augments the explosion strength: more energy is released at even
lower densities than for lower carbon mass fractions.

The detonation propagation velocity is affected by a varying carbon mass fraction
mainly through the reaction Q value—which is used as input for the detonation speed
computation (Section 3.3). For each carbon mass fraction, the detonation propagation
velocity is plotted in Figure 4.5 B. A global tendency to higher velocities for higher
carbon mass fractions can be recognized, being induced by the higher Q value (compare
Figure 4.5 A). The largest differences in propagation speed are located in the density
interval of carbon burning—also the location of the largest differences in the Q value.

The main consequences of the mentioned properties are that the detonation burning
front decreases in strength and propagation velocity with decreasing carbon mass
fraction.

4.1.2 Deflagrations

In order to generate the necessary abundance tables for the levelset method, the same
iterative procedure has been employed as for detonations. Because the laminar burning
speed has been computed in simulations, a fitting formula is taken from Timmes &
Woosley (1992), which interpolates in density and carbon mass fraction. Hence, the
additional step of computing the propagation velocities is not necessary in this case.
But as discussed in Section 2.3.3, the flame propagation is dominated by the turbulent
energy, hence the laminar burning speed is not very important for the deflagration.

The deflagration burning starts with laminar burning from the ignition kernels (using
the C3 model by Reinecke et al., 1999a) and consequently evolves into turbulent burning,
finally leading to a wrinkled flame. Due to the subsonic and turbulent propagation of
the flame—opposed to the supersonic detonations—the iterative calibration does not
converge as well as for detonations. As the flame structure is inherently multidimensional
for deflagrations, a two dimensional distribution of tracer particles is used to track the
nucleosynthesis. Since the propagation of the flame is subsonic, the tracer particles
follow the expansion of the WD and at the time of the levelset crossing, their density has
decreased from the initial value.

Moreover, the turbulent nature of the flame leads to a large scatter in the final outcomes
of the tracer particles with respect to the density at the crossing time of the levelset.
Hence, the final yields are binned in the logarithm of the burning density and in each
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Figure 4.6 | Abundance tables for deflagration calibration with X0(12C) = 0.5. Shown is the
mass fraction of the simplified chemical composition over the logarithm of the density as
calculated from the detailed nucleosynthesis postprocessing. For each density bin, the average
of the mass fraction for all tracer particles in this bin is computed. The error bars show the
standard deviation in the corresponding interval.

density bin the average and standard deviation of the mass fractions are calculated. The
scatter resulting in high standard deviations could be diminished by only taking into
account tracer particles reaching their peak temperature at most 0.2 s after the levelset
crossing. This method is demonstrated in Figure 4.6, where the abundance tables are
compared for the consecutive iteration runs for X(12C) = 0.5. The error bars display
the standard deviation in the corresponding density bins. The overall shape of the
abundance tables for the iteration runs is similar, although the transitions to the distinct
burning stages shift more than in the detonation calibration. The error bars are in general
not to large, so that the uncertainty of the abundance tables is not too high. They are
somewhat larger at the silicon burning threshold, where still a certain amount of scatter
remains. The error bars are similar for the other carbon mass fractions and are thus
omitted in the following figures.

The large scatter occurring in the calibration of the deflagration tables is caused by the
turbulent nature of the deflagration burning front. This leads to tracer particles, which
do not simply cross the burning front, but are advected in the flow. As an example, one
of these “pathological” tracer particles is examined in more detail in Figure 4.7. As can
be seen from the hydrodynamical evolution (Figure 4.7 A, B, C), this particular tracer
particle remains unburnt for a long time but is engulfed by the ashes. This leads to
heating by diffusion of hot ashes into this small pocket of unburnt material. The tracer
particle crosses the level set very late (∼ 1.6 s), when the small pocket is finally burned
out. The temporal evolution of the temperature (Figure 4.7 D) shows that the maximum
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Figure 4.7 | A “pathological” tracer particle. The top row (panels A, B, C) shows the hydrody-
namical evolution in the density of the last run of the deflagration calibration for X(12)C = 0.5.
The logarithm of the density is shown color-coded at the times 0.40 s, 0.95 s and 1.50 s. The
green line shows the track of the tracer particle number 4796 up to the corresponding time.
Panel D displays temperature (red) and density (blue) of the tracer particle in the course of
time, panel E the chemical composition. The dashed green lines mark the positions of the
hydrodynamical snapshots. The black line marks the point in time, when the tracer particle
crosses the level set.
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errors for the abundances. The number of tracer particles is 5727 (A) and 4220 (B), respectively.
The scatter is reduced especially in the low density part.
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of temperature occurs well before the level set crossing. The first spike in temperature
already leads to a substantial amount of reactions (compare the chemical composition,
Figure 4.7 E), as temperatures of several GK are reached. Now the reason why this
tracer particle increases the scatter, is that the burning density is recorded at the level
set crossing time (Figure 4.7 D), which does not correspond to the time—and hence, the
density—where the reactions occur. This is just one example of a “pathological” tracer
particle and many other, different cases may occur.

In order to reduce the scatter caused by similar tracer particles, an additional criterion
was introduced. The time difference between maximum temperature and level set
crossing must be positive, but smaller than 0.2 s. This ensures that the level set is first
crossed before the burning starts. The effect of this restriction is visualized in Figure 4.8.
The points in this plots show the final abundances of all tracers falling in this density
range and the mean values with standard deviations for a binning in the density. The
time restriction removes about 1500 tracer particles and reduces the scatter especially in
the lower density range.

A detailed view of the tracer particles used in the calibration is shown in Figure 4.9.
The final mean atomic number A is shown for the tracer particles at the initial (A, B)
and final positions (C). As can be seen in A, most tracer particles either do not burn at
all (black) or burn to NSE (yellow). The intermediate range is shown in (B), where the
tracers selected using the time restriction criterion are shown in their initial positions.
The effect of the Rayleigh-Taylor instability can be clearly seen in the mushroom-shaped
fingers. Panel C displays the final positions of the tracer particles which are strongly
mixed due to the turbulent motion during the burning.

As in the detonation case, the comparison of different runs for each carbon mass
fraction during the iterative procedure is facilitated by the use of reaction Q value tables.
The comparison of these Q value tables in Figure 4.10 shows that the different burning
stages are not obviously separated when looking at the Q value—whereas the abundance
tables show the different burning stages. In contrast, this distinction is clearly seen in
the abundance tables for detonations (compare Figure 4.3). Also, the change from one
iteration to the next is higher and the convergence is slower than in the detonation case.
Nevertheless, the difference in the reaction Q value between consecutive runs diminishes
in the course of the calibration procedure and hence, the error made by assuming
convergence after the sixth iteration should be small enough—at least compared to the
errors introduced by other assumptions in the model. Moreover, the biggest changes in
the tables are still at low densities below ∼ 107 g/cm3. As the DDT leads to a ignition
of a detonation at about this density, the fuel at lower densities is almost completely
burned by the supersonic detonation. Therefore, this lower density regime does not have
a big impact on the delayed detonation simulations presented in this work.

The reason why the convergence is not as good as in the detonation models lies
partly in the subsonic and partly in the turbulent nature of the burning. As the burning
proceeds subsonically, the WD is pre-expanded and the density ahead of the burning
front decreases. But one reason for the iteration scheme to work well was that the
burning density is not affected much by a higher Q value. Naturally, this is fulfilled for
detonations better than for deflagrations. On the other side, the turbulent nature of the
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burning front leads to random distributions of the tracer particles and thus to scatter
occurring in the tables.

The final abundance tables after the last iteration run are shown in Figure 4.11,
where the mass fractions for the simplified chemical composition are plotted against
density. Here, similar tendencies as for the detonation tables (Figure 4.4) can be seen:
the transitions to the distinct burning stages shift to lower densities for larger carbon
mass fractions. Moreover, the plateau of IME production following the carbon burning
threshold rises for higher carbon mass fractions, leading to a higher nuclear energy
release. Unlike in the detonation abundance tables, also the transition to carbon burning
shifts to lower densities for larger carbon mass fractions. Hence, the density range from
the onset of carbon burning to complete burning to NSE is larger for higher carbon mass
fractions.

These properties also show up in the comparison of the final reaction Q value tables for
different carbon mass fractions in Figure 4.12. The energy deposition behind the burning
front is greatest for the highest carbon mass fraction and then steadily decreases to lower
carbon mass fractions. At high densities, when burning to NSE, this is explained by the
lower binding energy of carbon compared to oxygen—being equal to a higher energy
difference to the tightly bound NSE material. At lower densities, the higher Q value is
on the one hand caused by the plateau in IME productions (similar to detonations), on
the other hand by the shift of the burning transitions to lower densities. These burning
thresholds are not clearly distinct in the Q value table.

This leads to the conclusion that turbulent deflagration burning is less vigorous for
lower carbon mass fractions due to the lower energy release.

4.2 2D Simulations

In order to study the impact of the chemical composition on thermonuclear supernovae,
a series of 2D simulations—hydrodynamics and postprocessing—with different initial
composition models has been conducted using the supernova code Leafs (Section 3.1.3).
In principle, 3D simulations are more accurate, as they allow for a more realistic treatment
of the turbulent flow. But as they are also computationally very expensive, only a small
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Table 4.1 | DDT criteria used in the 2D simulations. For each DDT criterion, the minimum and
maximum densities ρmin and ρmax as well as the critical Karlovitz number Kacrit are given.

Criterion ρmin/107 gcm−3 ρmax/107 gcm−3 Kacrit

ddt1 0.6 1.2 250
ddt2 0.5 0.8 1000
ddt3 0.5 0.8 2250
ddt4 0.6 1.2 2250

Table 4.2 | Ignition configurations for 2D simulations. For each ignition condition, the number
of kernels Nk (radius rk = 6 km) and the minimum distance between the midpoints of two
adjacent kernels, rmin, are given.

Name Nk rmin/rk

dd03 100 0.5
dd04 100 0.1
dd05 50 0.8
dd06 20 1.0
dd07 80 0.8
dd08 90 0.7
dd09 150 0.3
dd10 60 0.7

number of 3D simulations could be computed (Section 4.3). The suite of 2D simulations
includes simulations for different initial compositions with homogeneous carbon mass
fractions as well as varying carbon mass fractions, which should be more realistic
(cf. Section 2.4). The nucleosynthetic results of these models are given in Appendix A,
Table A.1.

4.2.1 Initial Models

Using different initial models, the burning process has been modeled for several ignition
conditions and DDT criteria. Each model name is composed of three parts:

1. The first part indicates the initial composition model. The composition of the
models cXY is homogeneous with a carbon mass fraction of XY%. The central
density is 2.9× 109 g/cm3. The models rp1 and rp2 (“realistic progenitor”) are
models with varying carbon mass fractions. The inner carbon mass fraction (rp1:
0.32, rp2: 0.28), which is homogeneous in the convective core of a certain mass
(rp1: 0.98 M�, rp2: 1.07 M�), is smoothly joined to the outer accretion layer above
1.2 M� with a carbon mass fraction of 0.5. The central density is taken to be
2.9× 109 g/cm3 (rp1) and 4.7× 109 g/cm3 (rp2). All these values are chosen to be
consistent with Lesaffre et al. (2006). In order to study the effect of the size of the
convective core, a series of initial models was created with varying sizes of the
convective core. All models have an homogeneous initial temperature distribution
with T = 5× 105 K.
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2. The second part denotes the DDT criterion which was employed in the correspond-
ing simulation. The DDT criterion for 2D simulations is discussed in Section 3.1.3.
A DDT is supposed to occur in cells which lie in a certain density range and
have Karlovitz numbers above a critical value of Kacrit. The detailed conditions
employed here are given in Table 4.1 and are similar to the ones used by Kasen
et al. (2009).

3. The last part of the model name gives the ignition configuration. The deflagration
flame was ignited in a certain number of kernels Nk with a radius of rk = 6 km,
which were randomly distributed according to a Gaussian distribution in radius in
an area with a maximum radius of 150 km. For each configuration, a minimum
distance rmin between the ignition kernels was established. The properties of the
different ignition conditions are given in Table 4.2. These conditions are the same
as used by Kasen et al. (2009), although with a different labeling.

The hydrodynamical simulations are carried out in an axisymmetric configuration
with a grid size of 512×1024 cells. Using the hybrid moving mesh technique, this
corresponds to an initial resolution of 1.06 km in the innermost part. The tracer particles
are distributed with variable tracer masses, as discussed in Section 3.1.3. This method
yields about 41000 tracer particles for each simulation. In the postprocessing step, the
solar metallicity by Asplund et al. (2009) was used as the initial composition. In order to
preserve the particle number, the sum of the mass fractions of all elements above oxygen
is subtracted from the initial carbon mass fraction.

4.2.2 Hydrodynamical Evolution

The hydrodynamical evolution of delayed detonation models is split into two parts—the
deflagration phase and the detonation phase. The explosion starts with an ignition of
the deflagration in a number of circular ignition kernels. After a short period of laminar
burning, Rayleigh-Taylor instabilities emerge and speed up the flame propagation by
inducing turbulence. Several such Rayleigh-Taylor fingers form while the hot ashes are
rising to the surface of the WD. The form of these fingers is mostly dominated by the
ignition kernels which are farthest away from the center. The turbulence induced by
the Rayleigh-Taylor and Kelvin-Helmholtz instabilities leads to a highly convoluted and
wrinkled flame. Since the deflagration burning front propagates subsonically, the whole
WD is expanded during this phase. After the burning regime changes from the flamelet
regime to the distributed burning regime, the deflagration turns into a detonation by
spontaneous ignition of a detonation. This detonation consumes the rest of the WD and
leads to a layered structure in the outer part of the ejecta.

Three examples for the hydrodynamical evolution of 2D models are shown in Fig-
ure 4.13. The models were selected by requesting a similar 56Ni mass and thus a similar
brightness. Each row shows the evolution of one model. The first three columns show
plots of the density at different times; the deflagration and detonation flame fronts are
indicated by the zero level sets of the corresponding level set functions. One characteris-
tic feature of 2D simulations, which can be seen here, is that the mixing of hot ashes and
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Figure 4.13 | Hydrodynamical evolution of three 2D models. The first three columns show
the density, the last column the mean atomic number of the hydrodynamical models at the
denoted times. The level sets of the deflagration and detonation are plotted in black and
green, respectively. The second column is at the time of the first DDT. The first row (A-
D) plots the model c30_ddt2_dd04 (M(56Ni) = 0.784 M�), the second row (E-I) the model
c50_ddt2_dd08 (M(56Ni) = 0.725 M�) and the third row (J-M) the model rp1_ddt1_dd07

(M(56Ni) = 0.734 M�).
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fuel is not as strong as in 3D simulations. Depending on their hydrodynamical evolution,
the detonation is initiated at different times. The states just before the DDT are displayed
in the second column, where the form of the deflagration flame front depends on the
initial distribution of ignition kernels. The third column shows the three models at 1.5 s,
after the detonation consumed almost all remaining fuel. In the outer layers, tapered
structures are visible, where the density is higher. These result from merging detonation
wavefronts, when the hydrodynamical shocks of each wavefront propagate through the
ashes of the other wavefront. In the last column, the mean atomic number A indicates
the simplified chemical composition as obtained from the hydrodynamical simulations.
In the outer parts, a layered structure can be seen, which is caused by the detonation
propagating through the low-density outer parts of the star. In the core, iron group
elements are formed and the burning products of the deflagration and the detonation
are mixed. In the outer layers, IME and some O are synthesized until the density drops
below the corresponding threshold.

Differences between the three models, which can be attributed to their initial composi-
tion and not to other factors—such as the ignition configuration and DDT criterion—can
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Figure 4.14 | Global properties of 2D simulations. In the first three panels, global properties
are plotted against the simulation time for five models (the three models from Figure 4.13, one
bright model, rp1_ddt1_dd05, with M(56Ni) = 1.04 M� and one faint model, rp1_ddt4_dd03,
with M(56Ni) = 0.353 M�). Panel A displays the total energy, panel B the turbulent energy
and panel C the nuclear energy generation rate. Panel D shows the total 56Ni mass against the
time of the first DDT for selected ignition conditions (circles: dd03, squares: dd04, upward
triangles: dd05, downward triangles: dd07) and selected initial models (c20, c30, c40, c50, rp1).
The models are colored by their initial total carbon mass fraction.
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be seen especially in the outer layers. The model with a homogeneous carbon mass
fraction of 0.3 (top row) shows more unburnt material in the outer layers in the final
state, as indicated by the lower mean atomic number. The model with a homogeneous
composition of X0(12C) = 0.5 shows more intermediate mass elements and also oxygen
at higher radii (i.e. at higher velocities). The realistic progenitor composition model (rp1)
shows properties in between these two extremes.

Some global properties of the same three models are depicted in Figure 4.14 together
with one bright model (rp1_ddt1_dd05, M(56Ni) = 1.04 M�) and one faint model
(rp1_ddt4_dd03, M(56Ni) = 0.353 M�). Panel A shows the evolution of the total energy
of the WD during the explosion phase. All models have final total energies above 1051 erg
and are thus completely unbound. The initiation of the detonation in the DDT can be
seen at the point where the total energy rises sharply. The faintest model (yellow) has
the latest DDT time and also the lowest total energy release. The brightest model, on the
other hand, shows the earliest DDT time and the highest energy release. In panel B, the
turbulent energy from the subgrid scale model is shown. Before the DDT is initiated, this
energy can be interpreted as a measure of the strength of the deflagration. One can see in
general, that a strong deflagration phase—accompanied by a strong pre-expansion—may
lead to fainter models, if the DDT occurs late enough. The second peak in the turbulent
energy is caused by the detonation wave burning the remaining fuel. The nuclear energy
generation rate is shown in panel C. As most of the nuclear energy is consumed very
fast during the detonation, the energy generation rate peaks shortly after the initiation
of the detonation. In general, the brighter models have a higher peak at earlier times.

Panel D of Figure 4.14 shows the total 56Ni mass against the DDT time, colored by
the total initial carbon mass fraction for selected ignition conditions (dd03, dd04, dd05,
dd07) and selected initial models (c20, c30, c40, c50, rp1). This shows that for the
same initial conditions, the 56Ni masses decrease with larger DDT times. This is due
to the pre-expansion of the WD being more pronounced at later times. Another trend
visible here is that the DDT times are larger for lower carbon mass fractions for same
ignition conditions. This indicates that the deflagration phase for lower carbon mass
fractions evolves weaker and thus, the conditions for a DDT are reached later. The more
pronounced pre-expansion then leads to lower 56Ni masses.

The ignition conditions affect the produced 56Ni mass through the evolution of the
deflagration phase, which is influenced by the number and distribution of the ignition
kernels. In general, a high number of ignition kernels induces a strong deflagration
phase and contrarily for a low number of ignition kernels. Hence, analogously to above,
a lower number of ignition kernels produces brighter events with higher 56Ni masses.
This can also be seen in Figure 4.14 D, where the upward triangles (dd05, 50 ignition
spots) are all above the circles (dd03, 100 ignition spots), thus producing more 56Ni.

4.2.3 Nucleosynthetic Yields

A summary of the most important nucleosynthetic yields from the postprocessing is
given in Table A.1. The simulations cover a wide range of 56Ni masses from ∼ 0.35 M�
to ∼ 1.05 M�, corresponding to a wide range in luminosities. Thus, they reproduce
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a certain spread in brightness which is necessary to explain observations finding a
diversity of SNe Ia (cf. Section 1.2).

The impact of the chemical composition on the 56Ni yields for homogeneous progenitor
compositions is compared in Figure 4.15 for two different DDT criteria. This figure
clearly shows that the total 56Ni mass decreases with decreasing carbon mass fraction
for the same initial conditions. This is due to the different hydrodynamical evolution, as
discussed in Section 4.2.2. For a smaller carbon mass fraction, the deflagration phase is
less vigorous because of the lower reaction energy deposition (cf. the Q value table in
Figure 4.12). This leads to a later initiation of the detonation as seen in Figure 4.14 D.
Hence, the WD undergoes a stronger pre-expansion and the detonation wave burns
material at lower densities and thus, less 56Ni is produced. Moreover, the shift of the
transition to Si burning to higher densities for lower carbon mass fractions acts in the
same direction.

It can also be seen from Figure 4.15 that the progenitor composition affects models
with lower 56Ni masses more than simulations with higher 56Ni masses. As discussed
above, brighter events tend to result from weak deflagration phases with a weak pre-
expansion, where the detonation is ignited early and burns a high amount of material to
56Ni. As the deflagration phase is weak for these ignition conditions, it is not affected
as strongly by the different C abundance as the stronger deflagration phases. Thus,
the chemical composition mainly affects the detonation by shifting the transitions to
the different burning stages. This only leads to a somewhat smaller amount of 56Ni
being produced. This can also be seen in Figure 4.14 D, where the upward triangles
(corresponding to the bright dd05 models) only show a small spread in the 56Ni mass.

The detailed nucleosynthetic yield from three models are compared to the solar
composition in Figure 4.16, which compares the mass fractions normalized to 56Fe.
The chemical composition of the Sun is taken from Asplund et al. (2009). The three
models are the same as in Figure 4.13 and are similarly bright. The nucleosynthetic
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Figure 4.15 | 56Ni masses for homogeneous 2D progenitor models. The total 56Ni mass is
plotted for different ignition conditions against the initial carbon mass fraction of the progenitor.
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yields from the postprocessing are followed until 2 Gyr after the explosion by decaying
the corresponding radioactive nuclei. Figure 4.16 shows that the three models are
very similar concerning their overall nucleosynthetic yields. Some intermediate mass
nuclei (28Si, 32S, 36Ar, 40Ca) are produced at a level of roughly half the solar values. All
these are α-nuclei being produced in the α-chain. The highest abundances occur in the
iron group nuclei. These are given in more detail in Figure 4.17. Most Cr, Fe and Ni
isotope abundances differ from the solar value less than by a factor of 2 (indicated by
the dotted lines). Depending on the ratio of SNe Ia to SNe Ibc and SNe II, a certain
overproduction of iron group nuclei is allowed when explaining the solar abundances in
the galactic chemical evolution (Iwamoto et al., 1999). In Figure 4.17, the abundances
are also compared to a recent version of the W7 model by Maeda et al. (2010). This
model is known for reproducing observed spectra quite well, but was computed using a
parametrized deflagration speed in one dimension. One can see that all Ni isotopes have
lower abundances in our models compared to W7. This reduces the overproduction of
58Ni, but shows an underproduction of neutron-rich nuclei.

The initial metallicity of the WD progenitor has a large impact on the nucleosynthesis
results (e.g. Timmes et al., 2003; Travaglio et al., 2005). They find find that the 56Ni
mass decreases linearly with the metallicity. In order to derive consistent conclusions,
the effect of the metallicity on the hydrodynamical simulations has to be accounted for,
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Figure 4.18 | Comparison of nucleosynthetic yields to solar composition for different metal-
licities. The mass fractions of all isotopes normalized to 56Fe are compared to the solar
abundances from Asplund et al. (2009) and plotted against the mass number. Shown are
nucleosynthetic yields from the rp1_ddt1_dd07 model with different initial metallicity in the
postprocessing: solar metallicity Z� (circles/solid lines), 0.5 Z� (upward triangles/dotted
lines) and 2 Z� (downward triangles/dashed lines). The horizontal dotted lines indicate
over-/underproduction by a factor of two compared to the solar values.

67



4 Results

which influences the equation of state and thus the hydrodynamical evolution. This
will be examined in detail in a forthcoming diploma thesis by A. Michel. In order to
study the effect of metallicity on the nucleosynthesis of the current models, a simplified
treatment has been employed: in the postprocessing, the initial composition was set to
the solar composition by Asplund et al. (2009) and to scaled versions of these abundances
by a factor of 0.5 and 2. The same trend is in Timmes et al. (2003) and Travaglio et al.
(2005) is found that higher metallicities produce less 56Ni: The model with half the solar
metallicity produced 0.776 M� 56Ni, the model with solar metallicity 0.758 M� and the
model with double the solar metallicity 0.725 M�. A comparison of the corresponding
nucleosynthetic yields (normalized to 56Fe) to the solar composition is displayed in
Figure 4.18 for the model rp1_ddt1_dd07. A general trend of higher metallicity is the
higher production of neutron-rich isotopes. At the same time, the two isotopes 54Fe and
58Ni have higher abundances compared to the abundance of 56Fe.

4.2.4 Distribution of Ejecta in Velocity Space

In order to compute synthetic light curves and spectra, the distribution of the composition
of the ejecta in the velocity space is important, as it determines the wavelengths of the
escaping photons. After the end of our simulations at 100 s, the expansion of the ejecta
is nearly homologous, i.e. the velocity of the ejecta is proportional to the radius and
constant for each fluid element.

The detailed nucleosynthetic yields from the three models with similar 56Ni masses
as in Figure 4.13 have been averaged over all angles resulting in a one-dimensional
distribution in velocity space at 100 s (Figure 4.19). The general structure is similar
in all three models and consists of a core containing 56Ni as well as some stable iron
group elements. On top of the nickel core, layers of Si, O and C follow. One difference
in the distributions is a shift in velocities due to the different kinetic energies. The
c30_ddt2_dd04 model has the lowest asymptotic kinetic energy (1.33× 1051 erg), followed
by rp1_ddt1_dd07 (1.40× 1051 erg) and c50_ddt2_dd08 (1.51× 1051 erg), as expected
from the initial composition (see also Table A.1). The 56Ni, e.g., extends only up to
∼ 14 500 km/s for the c30 model, but up to ∼ 17 000 km/s for the c50 model. The rp1

model lies in between these two models. One can also see a shift in the velocities of
28Si, which decrease from the c50 model over the rp1 model to the c30 model. Another
difference is visible in the outer layers, where the c30 model has a large amount of
unburnt material compared to the other two models. This is due to the shift in transition
densities in the detonation abundance tables, as the detonation in these outer layers
does not produce IME for X0(12C) = 0.3, but only burns a certain amount of carbon to
oxygen. In the other two models, initially consisting of material with X0(12C) = 0.5 in
the outer layers, burning to IME is still possible for the detonation, and small amounts of
IME are produced up to very high velocities. The density structure of the three models
is relatively similar, but it falls off more rapidly for models with lower explosion energy.

These three models all have 56Ni up to high velocities of roughly 15 000 km/s, which
is probably too high. Seitenzahl et al. (2012) find in their study of three-dimensional
models that the nickel extends only to velocities lower than 12 000 km/s. The high
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Table 4.3 | Light curve properties. Bmax gives the absolute magnitude in the B band, t(Bmax) the
rise time from explosion to B band maximum. ∆m15(B) is the difference in magnitudes in the
B band from maximum to 15 d after maximum, a characteristic quantity often compared by
observers.

Model Bmax t(Bmax)/d ∆m15(B)

c30_ddt2_dd04 −19.48 18.9 1.40
c50_ddt2_dd08 −19.45 15.8 1.34
rp1_ddt1_dd07 −19.42 17.2 1.31

velocities could also be due to the rather high 56Ni mass of about 0.73 M� produced in
these models, which is near the upper bound for normal SNe Ia.

In Figure 4.20, three models with same ignition configuration and DDT criteria are
compared. Here, one can see the same effect of the velocities shifting down for lower
carbon mass fraction due to the lower kinetic energy, but more pronounced than for
the models above. Also the composition in the outer layer is similar to the discussion
above. In the inner layer, however, the rp1 model here is very similar to the c30 model,
as the composition is similar (X0(12C) = 0.32 and 0.3, respectively). Moreover, the
velocities of the nickel core do not extend as far outwards as for the brighter models:
in the c30_ddt2_dd07 model up to ∼ 13 000 km/s, in the rp1_ddt2_dd07 model up to
∼ 14 000 km/s and in the c50_ddt2_dd07 model up to ∼ 15 000 km/s.

4.2.5 Synthetic Light Curves and Spectra

In order to compare the hydrodynamical simulations directly to observations of super-
novae, calculations of radiative transfer through the ejecta have to be carried out, in
order to compute synthetic light curves and spectra.

Figure 4.21 | Synthetic light curves for 2D models. The synthetic light curves in the B, V, R
and I bands of the three models from Figures 4.13 and 4.19 are compared to three normal SNe
Ia (in blue: 03du, 04eo and 05cf). The light curves are shifted in time to coincide at B band
maximum. Note that the light curves are too red, especially in the R band. I thank M. Kromer
for providing the synthetic light curves.
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For the three models with similar 56Ni mass (cf. Figure 4.13), radiative transfer
calculations were performed by M. Kromer who kindly provided the synthetic light
curves and spectra presented here. The calculations were done using the code Artis

(Sim, 2007; Kromer & Sim, 2009), a multi-dimensional Monte-Carlo code modelling
time-dependent radiative transfer. It follows the propagation of γ rays emitted mainly by
56Ni and the subsequent reprocessing of radiation into the optical, including all relevant
absorption and re-emission processes. Since the code does not use free parameters,
a direct comparison of the synthetic light curves and spectra with observed data is
possible.

Synthetic spectra computed with this code are for example used by Röpke et al. (2012)
in order to compare synthetic spectra of a delayed detonation model and a violent
merger model to the observed spectrum of SN 2011fe.

For this work, the ejecta distributions and density structure in velocity space shown
in Figure 4.19 have been used as input for radiative transfer calculations. Although
information about the somewhat asymmetric distribution of the ejecta is lost by angular
averaging, this method has been chosen as it allows for computations which are not too
expensive.

The resulting light curves are presented in Figure 4.21 together with light curves of
three observed supernovae. Important properties are summarized in Table 4.3. All
three models have a similar peak brightness in the B band of about −19.45 magnitudes.
∆m15(B) shows slight differences for all three models. The rise time, however, differs by
several days ranging from 15.8 d to 18.9 d. Although the light curve in the B band fits
quite well up to about 30 d after B band maximum, the light curves in the redder bands
are overestimated. Especially in the V band, the maximum is about 0.5 magnitudes too
large. This may be explained by analyzing the ejecta morphology in the velocity space
(Figure 4.19). The light curve is powered by the γ rays emitted in the radioactive decay
of 56Ni, which are reprocessed by material in the outer layers. In all models, stable iron
group elements extend to high velocities also above the nickel core. These elements,
including Cr, Ti and also Ni in the optically thin region absorb radiation at wavelengths
in the UV and re-emit the radiation at higher wavelengths. This process probably causes
the light curves to be very red compared to observed spectra.

This leads to the conclusion that the distribution of iron group elements in these
models range up to velocities which are too high in order to explain light curves of
normal SNe Ia.

This effect can also be seen in the synthetic spectra at B band maximum, which are
compared to SN 2002er in Figure 4.22. SN 2002er is a normal Type Ia supernova with an
estimate for the 56Ni mass of 0.69 M� (Kotak et al., 2005). One can see that the flux at
short wavelengths . 3600 Å is too low compared to the observed spectrum, whereas at
higher wavelengths, roughly between 5000 Å and 6000 Å, it is too high. Nevertheless,
the main spectral features are reproduced. The Si II lines at rest wavelengths of 6347 Å
and 6371 Å (cf. Section 1.2) show up as the blue-shifted part of a P Cygni profile at about
6000 Å to 6100 Å. The blueshift of the absorption depends on the velocity of silicon in
the explosion ejecta; higher blueshifts correspond to higher silicon velocities. The spectra
show that the Si velocity is highest for the c50_ddt2_dd08 model with the largest kinetic
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Figure 4.22 | Synthetic spectra for 2D models. Synthetic spectra at B band maximum of the
three models from Figures 4.13 and 4.19 are compared to the spectrum of the normal SN Ia
2002er, which was taken from Kotak et al. (2005). I am grateful to S. Hachinger for providing
the de-redshifted and de-reddened spectrum and to M. Kromer for providing the synthetic
spectra.

energy, less for the rp1_ddt1_dd07 model and least for the c30_ddt2_dd04 model with
the smallest kinetic energy. This clearly shows a trend among the models; the Si line of
the c30 model is near at the position of the observed line. When comparing the models
to the observed SN 2002er, one has to take into account that SN 2002er produced only
0.69 M� of 56Ni, which is less than the models produced. Hence, the kinetic energy of
the ejecta of SN 2002er could be less than in the models presented here.

Although the light curves are too red, the 2D delayed detonation models reproduce
the main spectral features. Moreover, a lower initial carbon mass fraction can result in Si
material at lower velocities, thus matching better the observed Si line velocity.

4.3 3D Simulations

As especially the turbulent deflagration phase is intrinsically three-dimensional, 3D
simulations are necessary for a more realistic description of thermonuclear explosions.
As these simulations are computationally demanding, only 5 three-dimensional simu-
lations have been conducted. These include two simulations with progenitors having
a homogeneous initial composition of X(12C) = 0.3 and 0.5, respectively. The other
simulations are computed for a progenitor with a varying carbon mass fraction for
different ignition conditions and DDT criteria. The final nucleosynthetic yields from the
postprocessing calculations are given in Table 4.4.
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4.3.1 Initial Models

Similar to the 2D models, the 3D models are determined by three components:

1. The first component is identical to the 2D simulations and denotes the same initial
progenitor systems as for the 2D simulations.

2. The DDT criterion as the second component is different in three dimensions
(Section 3.1.3) compared to two dimensions. Shortly summarized, all cells at the
front lying in a certain density and fuel content range are used to calculate an
effective surface of the front. If the ratio of this value to the total flame front
surface exceeds a certain threshold for half an eddy turnover time, a detonation
is initiated in the cells with the highest velocity fluctuations. For the DDT, the
same parameters as in Seitenzahl et al. (2012) are used, except for the fuel content
range, which is taken to be 0.3 to 0.7, and the density range, which is tabulated in
Table 4.5.

3. The last part corresponds to the initial ignition configuration of the deflagration,
which determines the strength of the deflagration phase. The same initial configu-
rations are chosen as in Seitenzahl et al. (2012). The number in the last part of the
name denotes the number of ignition kernels.

All 3D simulations have been carried out as full star simulations on a grid with 5123

cells. This corresponds to an initial resolution of 2.14 km in the inner part of the hybrid
moving grid. Approximately one million tracer particles are distributed according to the
variable tracer mass method (Section 3.1.3). As for the two-dimensional simulations, the
initial composition for the postprocessing was chosen to include the solar metallicity by
Asplund et al. (2009).

Table 4.4 | Nucleosynthetic yields for 3D simulations. Given are the total nucleosynthetic
yields of each model. The model name consists of three parts. The first part describes the
progenitor structure, where the cXY denotes a homogeneous composition with a carbon mass
fraction of XY% and rp1 denotes the realistic progenitor model one. The second part indicates
the DDT criterion employed, as given in Table 4.5. The third part gives the initial ignition
configuration (as in Seitenzahl et al., 2012); the number denotes the number of ignition kernels.
Ekin,a is the asymptotic kinetic energy of the ejecta, which is the sum of the final nuclear energy,
the initial internal energy and the initial gravitational energy (being negative).

Model
M(IGE)

M�
M(56Ni)

M�
M(IME)

M�
M(16O)

10−2 M�
M(12C)

10−3 M�

Ekin,a

1051 erg

c30_ddt1_N0100 0.909 0.675 0.407 7.80 2.29 1.30
c50_ddt1_N0100 1.03 0.812 0.327 3.47 0.943 1.55
rp1_ddt1_I0040 0.897 0.681 0.418 7.93 2.94 1.34
rp1_ddt4_I0200 0.939 0.676 0.413 4.56 1.31 1.39
rp1_ddt6_N0100 0.944 0.710 0.403 5.03 1.30 1.38
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Table 4.5 | DDT criteria used in the 3D simulations. For each DDT criterion, the minimum and
maximum densities ρmin and ρmax are given.

Criterion ρmin/107 gcm−3 ρmax/107 gcm−3

ddt1 0.5 0.8
ddt4 0.8 1.1
ddt6 0.7 1.0

4.3.2 Hydrodynamical Evolution

The hydrodynamical evolution of three-dimensional models is similar to two-dimensional
models. First, a deflagration flame propagates subsonically outwards until a detonation
is initiated. Because of the intrinsic, three-dimensional nature of the turbulent burning,
three-dimensional models are better suited for this problem. Moreover, in our supernova
code Leafs, the subgrid scale model and the DDT criterion are more elaborate for
three-dimensional simulations (Section 3.1.3).

The hydrodynamical evolution of three 3D models is visualized in Figure 4.23. Each
column shows the evolution for one model at t = 0.55 s (first row), tDDT (second row)
and t = 1.50 s (last row). Each plot displays the mean atomic number, where red
regions correspond to IGE, green and yellow regions to IME and blue regions to unburnt
material. Panel C shows an early state for the rp1_ddt6_N0100 model and the transition
from the inner convective core with a carbon mass fraction of 0.32 to the outer accreted
layer with a carbon mass fraction of 0.5 is clearly visible. The second row shows
the highly convoluted flame structure of the deflagration front at the time when the
first detonation is initiated. The last row shows the structure of each model after the
detonation consumed most of the unburnt fuel. The detonation ashes—consisting in the
outer parts of IME—encompass the deflagration ashes in large regions.

The evolution of the three models is rather similar; this can be attributed to the fact
that all three models employ the same ignition configuration. Despite this, the c50 model
shows a remarkable asymmetry after the deflagration phase (panel E) and also after the
detonation phase (panel H).

Global properties of all five models are analyzed in Figure 4.24. The evolution of
the total energy shows a similar behaviour as in the two-dimensional models, although
the rise after the DDT is not as steep. Furthermore, the time of the first DDT generally
is later than in the 2D simulations. This is due to the three-dimensional modelling:
in the axisymmetric 2D simulations, in principle tori are burned with a much larger
volume than the three-dimensional ignition kernels have. Therefore, the evolution of the
deflagration is faster in two dimensions than in three dimensions. One can also note
that all models have final total energies above 1051 erg and are thus completely unbound.
Panel B shows the temporal evolution of the turbulent energy from the subgrid scale
model. One can see that for more ignition kernels (I0200 model), the deflagration phase
is stronger. The nuclear energy generation rate is shown in panel C. Similar to the 2D
simulations, the nuclear energy generation peaks shortly after the detonation is initiated.
For earlier DDT times, the spike in the rate is higher, which is caused by the detonation
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Figure 4.23 | Hydrodynamical evolution of three 3D models. Each plot shows a volume render-
ing of the mean atomic number A of a certain snapshot of the corresponding hydrodynamical
simulation. The axes indicate the spatial coordinates in 108 cm. The blue regions indicate
carbon and oxygen, the green and yellow regions intermediate mass elements and the red
region iron group elements. The leftmost column (A, D, G) shows the model c30_ddt1_N0100,
the central column (B, E, H) shows the model c50_ddt1_N0100 and the rightmost column (C,
F, I) shows the model rp1_ddt6_N0100. The time is printed for each snapshot. The second
row (D, E, F) shows the abundance structure at the time of the first DDT for each model.
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Figure 4.24 | Global properties of 3D simulations. In the first three panels, global properties
are plotted against the simulation time for all 3D models (compare Table 4.4). Panel A displays
the total energy, panel B the turbulent energy and panel C the nuclear energy generation rate.
Panel D shows the total 56Ni mass against the time of the first DDT for all models. The models
are colored by their initial averaged carbon mass fraction and the edge color indicates the
model with the same colors as used in A–C.

consuming higher density fuel as at later times and thus having a greater energy release.
Panel D displays the total 56Ni mass over the DDT time. A similar trend as in the 2D
models can be seen: for similar initial conditions, a model with lower carbon mass
fraction undergoes the DDT later, thus producing a smaller amount of 56Ni.

A comparison of the rp1_ddt1_I0040 model with the rp1_ddt4_I0200 model shows
that a model with more ignition kernels and thus a stronger deflagration phase can
produce the same amount of 56Ni as a model with a weaker deflagration phase, if the
DDT is initiated earlier in a higher density range.

4.3.3 Nucleosynthetic Yields

The detailed nucleosynthetic abundances for all five models are summarized in Table 4.4.
As in the 2D simulations, models with lower carbon mass fractions tend to produce less
56Ni for the same initial conditions. For similar 56Ni mass, on the other hand, lower
kinetic energies are reached. Moreover, the models with lower carbon mass fraction in
the core produce more IME and have also more unburnt material (C, O).

For the same three models as in Figure 4.23, the nucleosynthetic abundances are
compared to the solar abundances (Asplund et al., 2009) in Figure 4.25. The mass
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fraction of each isotope was computed by following the radioactive decays for 2 Gyr. All
mass fractions have been normalized to the mass fraction of 56Fe, which is the main stable
decay product of 56Ni. The most abundant isotopes are the iron group nuclei, especially
Cr, Fe and Ni. The three models mainly differ in the abundances of intermediate mass
elements from Mg to Ti. The models with a lower carbon mass fraction in the core (c30

and rp1) produce more IME compared to 56Fe than the c50 model. For most isotopes,
this is even more pronounced in the c30 model (upward triangles). Similarly to the 2D
simulations, the abundances of the α isotopes from 28Si to 40Ca are higher than half the
solar values for the c30 and rp1 models and slightly below for the c50 model.

The details of the nucleosynthetic yields for the iron group nuclei are shown in
Figure 4.26. In general, most isotopes lie in a range of over- or underproduction of
solar abundances by a factor of two, except for the most neutron-rich isotopes. The c50

model (circles) shows smaller abundances of most Cr isotopes, but higher abundances of
some Ni isotopes. The other two models have similar abundances (triangles). Compared
to the abundances of the W7 model (squares), less Ni and Co isotopes are produced,
but some Cr and Mn abundances are higher. 58Ni is only overproduced by a factor
of two, compared to a factor of four in in the W7 model. As explained for the 2D
simulations, this can explain the iron abundance in the solar system through galactic
chemical evolution.
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Figure 4.25 | Comparison of nucleosynthetic yields to solar composition for 3D models. The
mass fractions of all isotopes normalized to 56Fe are compared to the solar abundances
from Asplund et al. (2009) and plotted against the mass number. Shown are the models
c30_ddt1_N0100 (upward triangles/dotted lines), c50_ddt1_N0100 (circles/solid lines) and
rp1_ddt6_N0100 (downward triangles/dashed lines). The horizontal dotted lines indicate
over- and underproduction by a factor of two compared to the solar values.
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Figure 4.26 | Comparison of iron group nuclei to solar composition for 3D models. The mass
fractions of iron group nuclei normalized to 56Fe are compared to the solar abundances
from Asplund et al. (2009) and plotted against the mass number. Shown are the models
c30_ddt1_N0100 (upward triangles/dotted lines), c50_ddt1_N0100 (circles/solid lines) and
rp1_ddt6_N0100 (downward triangles/dashed lines), as well as the W7 model (transparent
squares/thin solid lines, Maeda et al., 2010). The horizontal dotted lines indicate over- and
underproduction by a factor of two compared to the solar values.

4.3.4 Distribution of Ejecta in Velocity Space

For the three-dimensional models, no synthetic spectra were computed, as the radiative
transfer calculations are computationally very demanding in three dimensions. This
is because of the high number of photon packets which are necessary to obtain high
quality synthetic spectra. Due to time restrictions, these calculations could not be done
in the course of this diploma thesis, but will be engaged in the future.

Nevertheless, one can compare the structure of the ejecta in velocity space, which
determines the synthetic light curves and spectra. The results of mapping the detailed
nucleosynthetic yields and the density profile from the hydrodynamical simulation are
presented in Figure 4.27 (c30_ddt1_N0100), Figure 4.28 (c50_ddt1_N0100), Figure 4.29

(rp1_ddt6_N0100), Figure 4.31 (rp1_ddt4_I0200) and Figure 4.30 (rp1_ddt1_I0040). The
plots show the density and mass fractions in the vx-vz-plane for vy = 0. Although these
plots do not capture the full information of the three-dimensional models, they are
better suitable for a detailed analysis than 3D plots of volume rendered quantities (e.g.
Figure 4.23), where the scales cannot be analyzed as well as in two-dimensional plots.

All models show a similar global structure: an inner core consisting of stable iron
elements and 56Ni is surrounded by layers of intermediate mass elements (Si is shown
as an example), oxygen and carbon. Apart from this global structure, all models show
characteristic features and also asymmetries in varying degrees. The density and the
C, O and Si abundances in the outer layers show irregularities in the circular structure
which can be attributed to merging detonation wavefronts. The higher densities in these
regions result from the hydrodynamical shocks propagating through the ashes of the
other detonation wave. A good example for this process is demonstrated in Figure 4.27,
where near the vz = 0-plane, two big depressions in the circular structure are visible in
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Figure 4.27 | Ejecta morphology in velocity space for c30_ddt1_N0100. Shown are slices in the
vx-vz-plane (vy = 0) for the density from the hydrodynamical simulation (top left panel) and
the nucleosynthetic yields from the postprocessing step, which were mapped to a grid with
2003 cells at the end of the simulation (t = 100 s). The mass fractions of C, O and Si are sums
over all corresponding isotopes. The last panel shows the mass fraction of “stable Fe”, which
was computed as the mass fraction of all IGE minus the mass fractions of the radioactive
isotopes 56Ni, 56Co, 52Fe and 48Cr. In the outer regions, where the density is below 10−4 g/cm3,
all abundance values have been set to zero. For this model, M(56Ni) = 0.675 M�.

the Si and O mass fractions. The same structures can also be seen in the density plot
and show higher densities.

As the c30 model is the only model with a carbon mass fraction of 0.3 also in the
outer layers, it shows unburnt oxygen at a mass fraction of 0.7, as opposed to the other
models which show unburnt oxygen at a mass fraction of 0.5. The first three mod-
els, c30_ddt1_N0100 (Figure 4.27), c50_ddt1_N0100 (Figure 4.28) and rp1_ddt6_N0100

(Figure 4.29), are all ignited with the same initial configuration. This leads to similar
features resulting from the deflagration: the distribution of stable iron—mainly resulting
from the deflagration phse at high densities—shows an asymmetry comparing vx- and
vz-directions. The deflagration burns only in the upper and lower hemisphere, at least
in this plane. As can be seen in the 56Ni mass fractions, the core area consists mainly of
56Ni resulting from the detonation wave consuming the unburnt material in the core. A
similar feature can be seen for the model rp1_ddt1_I0040 (Figure 4.30), where the defla-
gration ashes are concentrated in an outer shell concentrated in the upper hemisphere.
A core of 56Ni resulting from the detonation is found in the center, slightly shifted to
the lower hemisphere. The model rp1_ddt4_I0200 with more ignition sparks shows a
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Figure 4.28 | Ejecta morphology in velocity space for c50_ddt1_N0100. For a description of the
plots, see Figure 4.27. For this model, M(56Ni) = 0.812 M�.
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Figure 4.29 | Ejecta morphology in velocity space for rp1_ddt6_N0100. For a description of the
plots, see Figure 4.27. For this model, M(56Ni) = 0.681 M�.
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Figure 4.30 | Ejecta morphology in velocity space for rp1_ddt1_I0040. For a description of the
plots, see Figure 4.27. For this model, M(56Ni) = 0.676 M�.
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Figure 4.31 | Ejecta morphology in velocity space for rp1_ddt4_I0200. For a description of the
plots, see Figure 4.27. For this model, M(56Ni) = 0.710 M�.
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stronger deflagration phase. This leads to a more complete deflagration burning near
the center (Figure 4.31), producing more stable IGE in the core. The whole core is also
more mixed in this model compared to the other models.

Comparing the velocities of the 56Ni core, the c50 model shows the highest velocities up
to ∼ 15 000 km/s, whereas the other models show lower velocities up to ∼ 12 000 km/s
or ∼ 13 000 km/s. These velocities are somewhat smaller than in the 2D models com-
pared in Figure 4.19, although one has to take into account the different nickel mass of
the models. This may also have an impact on the light curves, which are too red in the
2D models (Figure 4.21) because of iron group elements being present at comparatively
high velocities. As these velocities are lower in the 3D models, the light curves may be
not as red, but this has to be confirmed in radiative transfer calculations.

The Si material shows up at the lowest velocities for the c30 model and at the highest
velocities for the c50 model. The rp1 models lie in between these two extremes, but
show also small abundances of Si at higher velocities, similar to the c50 model. This
should lead to a similar effect in the spectra as for the 2D models (Figure 4.22): the Si II
feature should shift to lower velocities and thus higher wavelengths, which is required
by observations. Radiative transfer calculations will be necessary in order to be able to
finally compare the synthetic spectra to observed spectra and see the effect on the Si II
feature.
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5 Conclusions

In this diploma thesis, I examined the impact of the progenitor white dwarf’s composi-
tion on thermonuclear supernovae. To this end, the modelling of burning fronts was
improved to account for different chemical compositions. This improved modelling was
then applied to large scale, two- and three-dimensional simulations of thermonuclear
explosions of Chandrasekhar-mass WDs in the delayed detonation model.

Varying progenitor compositions were taken into account since stellar evolution
results predict a WD with a carbon depleted core (Section 2.4). Opposed to current
simulations using the same code (e.g. Seitenzahl et al., 2012), which assume homogeneous
progenitors, this work presents a more realistic treatment of the initial composition.

Apart from implementing a more realistic treatment of the progenitor composition and
examining its effect on the explosion process, the objectives of this diploma thesis are on
the one hand to compare the outcome of the simulations with observables—light curves
and spectra—in order to see if the improved modelling also leads to a better agreement
with the process in Nature. On the other hand, it is important to check if the variability
predicted in the stellar evolution models for the initial composition leads to a variability
in the outcome, thus helping to understand the diversity of Type Ia supernovae.

5.1 Properties of Burning Fronts

The burning fronts—deflagrations and detonations—are modeled in our numerical
scheme using the level set method as a discontinuity given by the zero level set of a
signed distance function. The nuclear energy is released directly behind the front and
is taken from tables. These tables were created for different chemical compositions of
the WD using an iterative calibration scheme (Section 4.1) in order to be able to model
burning fronts for different—also varying—chemical compositions.

The initial carbon mass fraction of the fuel affects the total energy release mainly in
two ways:

• Due to different binding energies, the total energy release of burning to NSE is
lower for lower carbon mass fractions. The iterative calibration leads to an overall
lower energy release at all densities.

• The transitions to the different burning stages (carbon burning, oxygen burning,
silicon burning) shift to higher densities for lower carbon mass fractions.

Thus, the explosion strength of deflagrations and detonations is reduced for lower carbon
mass fractions.
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5.2 Impact on Simulations of Delayed Detonations

These new tables have been used to examine the impact of different initial compositions—
homogeneous and varying—on thermonuclear explosion models in two (Section 4.2)
and three dimensions (Section 4.3). The main global impact of the chemical composition
is that lower initial carbon mass fractions lead to a lower mass of produced 56Ni for
the same ignition conditions. Moreover, the asymptotic kinetic energy is reduced. The
reason for this lies in the lower energy release of the burning fronts. The deflagration
develops weaker for lower carbon mass fractions, hence leading to a later deflagration-
to-detonation transition. At later times, the pre-expansion of the WD by the deflagration
is stronger, thus the densities are lower. Therefore, the detonation produces less 56Ni at
these lower densities.

This connection of the initial composition to the total 56Ni mass showed that a variety
of models with different 56Ni masses are obtained for different initial compositions.
Thus, some part of the diversity of SNe Ia in luminosity may be explained by variations
in the initial composition.

The total nucleosynthetic yields of the models after the decay of most radioactive
isotopes may be able to explain the solar abundances pattern relative to 56Fe. The
difference in the abundance patterns between different progenitor compositions is not
very pronounced. Here, the impact of metallicity was found to be stronger.

The light curves and spectra of thermonuclear explosions are determined by the
morphology of the ejecta in velocity space. The delayed detonation models show a
layered structure with a core consisting mainly of 56Ni and stable iron group elements
and with shells of intermediate mass elements—most prominently silicon—, of oxygen
and of carbon on top of this core. The maximum velocities of the 56Ni and IGE core lie in a
range of 12 000 km/s to 17 000 km/s and are higher for initial models with higher carbon
mass fractions. Furthermore, the 3D simulations suggest somewhat lower velocities
than the 2D simulations. The structure of Si in the ejecta determines the characteristic
Si II absorption feature and depends on the initial composition. Homogeneous models
with X0(12C) = 0.3 show lower velocities than homogeneous models with X0(12C) = 0.5,
where also some Si is present out to high velocities. More realistic progenitor models
featuring a carbon depleted core with X0(12C) = 0.32 and an outer accretion shell with
X0(12C) = 0.5 show an intermediate behaviour. The velocity of the region with the
maximum abundances lies in between the two homogeneous models, but some Si is also
present up to high velocities.

For three two-dimensional models, radiative transfer calculations yield synthetic light
curves and spectra, which are compared to observed light curves and spectra. The
absolute magnitudes in the B band and the rise times compare well to observations. The
light curves show agreement around maximum light in the B band, but are too bright in
the redder bands, especially in the V band. This might be due to 56Ni and other iron
group elements being present up to rather high velocities, thus distributing the flux from
the blue part of the spectrum to the redder parts. The spectra of these three models
are compared to the normal supernova 2002er. They reproduce the main features of
the spectrum, although they are too red. For lower initial carbon mass fraction, the
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5.3 Outlook

Si II absorption feature shifts to lower velocities and thus to higher wavelengths. This
matches better to the observed spectrum.

Thus, it has been shown that a more realistic modelling of the initial chemical compo-
sition leads to models which compare better to an observed supernova than the generic
progenitor setups used in multidimensional SN Ia simulations before.

5.3 Outlook

In order to examine the impact of the initial composition on synthetic observables in
more detail, more three-dimensional models have to be computed accompanied by
radiative transfer calculations. These 3D models will allow for a more realistic treatment
of the hydrodynamics and the radiative transfer.

The properties of the burning fronts depending on the initial composition can also
be used for studying the impact of the initial composition on other explosion scenarios,
such as the sub-Chandrasekhar-mass double detonation models or the violent merger
models.

As the nucleosynthetic yields depend strongly on the initial metallicity of the pro-
genitor, the impact of metallicity on the realistic progenitor models presented in this
work should be examined in more detail. This will also help to improve modeling of the
chemical evolution of galaxies.
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A Nucleosynthetic Yields for 2D Simulations

Table A.1 | Nucleosynthetic yields for 2D simulations. Given are the total nucleosynthetic
yields of each model. The model name consists of three parts. The first part describes the
progenitor structure, where the cXY denotes a homogeneous composition with a carbon mass
fraction of XY%, rp1 and rp2 denote the realistic progenitor models one and two (see also
Section 4.2.1). The second part indicates the DDT criterion employed, as given in Table 4.1.
The third part gives the initial ignition configuration (cf. Table 4.2). Ekin,a is the asymptotic
kinetic energy of the ejecta, which is the sum of the final nuclear energy, the initial internal
energy and the initial gravitational energy (being negative). The last lines show the yields for
the models with scaled initial metallicity in the postprocessing (cf. Section 4.2.3).

Model
M(IGE)

M�
M(56Ni)

M�
M(IME)

M�
M(16O)

10−1 M�
M(12C)

10−3 M�

Ekin,a

1051 erg

c20_ddt1_dd03 0.704 0.462 0.537 1.46 4.87 1.09
c20_ddt1_dd04 1.05 0.811 0.282 0.614 1.87 1.28
c20_ddt1_dd05 1.22 0.971 0.142 0.351 0.980 1.35
c20_ddt1_dd06 1.15 0.973 0.198 0.445 1.16 1.32
c20_ddt1_dd07 0.869 0.603 0.418 1.02 3.90 1.18
c20_ddt1_dd08 0.850 0.597 0.441 0.982 3.83 1.18
c20_ddt1_dd09 0.708 0.444 0.544 1.36 5.02 1.11
c20_ddt1_dd10 0.879 0.609 0.417 0.951 3.14 1.19
c30_ddt1_dd03 0.828 0.579 0.483 0.848 2.04 1.26
c30_ddt1_dd04 1.09 0.848 0.264 0.446 0.988 1.38
c30_ddt1_dd05 1.23 0.984 0.143 0.255 0.560 1.45
c30_ddt1_dd06 1.19 1.01 0.179 0.288 0.446 1.42
c30_ddt1_dd07 0.945 0.677 0.378 0.716 2.18 1.31
c30_ddt1_dd08 0.881 0.626 0.439 0.752 2.23 1.29
c30_ddt1_dd09 0.850 0.580 0.462 0.829 2.22 1.28
c30_ddt1_dd10 0.943 0.672 0.388 0.643 1.68 1.32
c40_ddt1_dd03 1.02 0.769 0.332 0.428 1.04 1.44
c40_ddt1_dd04 1.15 0.912 0.214 0.290 0.632 1.50
c40_ddt1_dd05 1.26 1.02 0.115 0.188 0.494 1.54
c40_ddt1_dd06 1.23 1.05 0.145 0.192 0.308 1.53
c40_ddt1_dd07 1.11 0.836 0.248 0.427 1.22 1.47
c40_ddt1_dd08 1.10 0.844 0.254 0.397 1.19 1.47
c40_ddt1_dd09 1.00 0.729 0.345 0.510 1.57 1.43
c40_ddt1_dd10 1.08 0.803 0.279 0.400 1.03 1.46
c50_ddt1_dd03 1.08 0.829 0.282 0.327 1.05 1.55
c50_ddt1_dd04 1.21 0.968 0.166 0.198 0.470 1.60
c50_ddt1_dd05 1.29 1.04 0.0951 0.134 0.378 1.63
c50_ddt1_dd06 1.26 1.08 0.122 0.126 0.270 1.62
c50_ddt1_dd07 1.14 0.869 0.224 0.336 1.11 1.57
c50_ddt1_dd08 1.15 0.888 0.222 0.295 0.983 1.57
c50_ddt1_dd09 1.11 0.837 0.254 0.331 0.995 1.56
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Table A.1 | Continued.

Model
M(IGE)

M�
M(56Ni)

M�
M(IME)

M�
M(16O)

10−1 M�
M(12C)

10−3 M�

Ekin,a

1051 erg

c50_ddt1_dd10 1.16 0.883 0.213 0.269 0.834 1.58

c20_ddt2_dd03 0.575 0.345 0.552 2.45 12.3 0.973
c20_ddt2_dd04 0.954 0.719 0.334 1.02 4.27 1.21
c20_ddt2_dd05 1.15 0.905 0.195 0.486 1.90 1.32
c20_ddt2_dd06 1.09 0.916 0.225 0.761 2.64 1.26
c20_ddt2_dd07 0.700 0.442 0.518 1.64 8.38 1.08
c20_ddt2_dd08 0.662 0.420 0.543 1.76 8.98 1.07
c20_ddt2_dd09 0.571 0.319 0.590 2.16 10.5 1.01
c20_ddt2_dd10 0.721 0.458 0.508 1.56 6.82 1.10
c30_ddt2_dd03 0.646 0.409 0.600 1.44 4.23 1.17
c30_ddt2_dd04 0.984 0.748 0.340 0.704 2.13 1.33
c30_ddt2_dd05 1.16 0.921 0.193 0.387 1.03 1.42
c30_ddt2_dd06 1.11 0.930 0.238 0.522 1.13 1.37
c30_ddt2_dd07 0.725 0.467 0.534 1.29 5.28 1.20
c30_ddt2_dd08 0.687 0.442 0.579 1.24 4.66 1.20
c30_ddt2_dd09 0.660 0.402 0.595 1.34 5.22 1.19
c30_ddt2_dd10 0.756 0.493 0.526 1.10 3.66 1.23
c40_ddt2_dd03 0.803 0.559 0.515 0.780 2.46 1.35
c40_ddt2_dd04 1.04 0.805 0.308 0.454 1.31 1.45
c40_ddt2_dd05 1.21 0.963 0.162 0.266 0.847 1.52
c40_ddt2_dd06 1.16 0.976 0.210 0.313 0.666 1.49
c40_ddt2_dd07 0.931 0.666 0.398 0.653 2.58 1.40
c40_ddt2_dd08 0.918 0.664 0.419 0.585 2.13 1.40
c40_ddt2_dd09 0.761 0.498 0.549 0.847 2.84 1.34
c40_ddt2_dd10 0.899 0.629 0.434 0.630 2.03 1.38
c50_ddt2_dd03 0.862 0.616 0.478 0.559 2.00 1.46
c50_ddt2_dd04 1.09 0.851 0.276 0.302 0.886 1.56
c50_ddt2_dd05 1.23 0.990 0.143 0.193 0.688 1.61
c50_ddt2_dd06 1.18 0.998 0.196 0.223 0.571 1.58
c50_ddt2_dd07 0.969 0.702 0.377 0.500 2.09 1.50
c50_ddt2_dd08 0.977 0.725 0.378 0.414 1.62 1.51
c50_ddt2_dd09 0.884 0.616 0.462 0.508 2.01 1.48
c50_ddt2_dd10 1.01 0.742 0.345 0.391 1.40 1.52

rp1_ddt1_dd03 0.864 0.614 0.479 0.536 1.77 1.34
rp1_ddt1_dd04 1.12 0.880 0.249 0.275 0.867 1.46
rp1_ddt1_dd05 1.29 1.04 0.0983 0.138 0.365 1.52
rp1_ddt1_dd06 1.22 1.03 0.161 0.188 0.404 1.49
rp1_ddt1_dd07 1.00 0.734 0.349 0.446 1.84 1.40
rp1_ddt1_dd08 1.01 0.751 0.347 0.406 1.47 1.40
rp1_ddt1_dd09 0.906 0.634 0.441 0.497 1.87 1.37
rp1_ddt1_dd10 0.972 0.700 0.382 0.431 1.44 1.39
rp1_ddt2_dd03 0.661 0.422 0.628 1.05 3.41 1.25
rp1_ddt2_dd04 0.970 0.734 0.372 0.535 1.75 1.39
rp1_ddt2_dd05 1.23 0.987 0.145 0.201 0.653 1.50
rp1_ddt2_dd06 1.13 0.956 0.228 0.351 0.833 1.44
rp1_ddt2_dd07 0.850 0.586 0.478 0.668 2.95 1.34
rp1_ddt2_dd08 0.783 0.533 0.538 0.737 2.75 1.32
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Table A.1 | Continued.

Model
M(IGE)

M�
M(56Ni)

M�
M(IME)

M�
M(16O)

10−1 M�
M(12C)

10−3 M�

Ekin,a

1051 erg

rp1_ddt2_dd09 0.694 0.434 0.610 0.894 3.83 1.28
rp1_ddt2_dd10 0.785 0.521 0.530 0.794 2.76 1.31
rp1_ddt3_dd03 0.584 0.354 0.643 1.62 5.32 1.17
rp1_ddt3_dd04 0.939 0.704 0.393 0.630 2.24 1.37
rp1_ddt3_dd05 1.22 0.973 0.156 0.229 0.744 1.49
rp1_ddt3_dd06 1.11 0.937 0.237 0.465 1.44 1.43
rp1_ddt3_dd07 0.768 0.509 0.540 0.845 3.86 1.30
rp1_ddt3_dd08 0.648 0.406 0.636 1.08 4.38 1.25
rp1_ddt3_dd09 0.617 0.363 0.654 1.20 5.04 1.23
rp1_ddt3_dd10 0.703 0.445 0.580 1.09 3.94 1.26
rp1_ddt4_dd03 0.584 0.353 0.658 1.48 5.03 1.18
rp1_ddt4_dd04 0.917 0.683 0.408 0.695 2.36 1.36
rp1_ddt4_dd05 1.22 0.976 0.153 0.224 0.752 1.49
rp1_ddt4_dd06 1.10 0.923 0.254 0.430 1.29 1.42
rp1_ddt4_dd07 0.768 0.509 0.540 0.845 4.20 1.30
rp1_ddt4_dd08 0.644 0.403 0.638 1.09 4.46 1.25
rp1_ddt4_dd09 0.617 0.363 0.653 1.20 5.55 1.23
rp1_ddt4_dd10 0.699 0.440 0.582 1.11 4.05 1.25

rp2_ddt1_dd03 0.886 0.556 0.470 0.539 1.56 1.32
rp2_ddt1_dd04 1.15 0.833 0.234 0.245 0.776 1.43
rp2_ddt1_dd05 1.29 0.970 0.101 0.149 0.408 1.48
rp2_ddt1_dd06 1.21 0.984 0.179 0.191 0.497 1.45
rp2_ddt1_dd07 1.00 0.638 0.361 0.472 2.03 1.36
rp2_ddt1_dd08 1.03 0.695 0.338 0.370 1.33 1.38
rp2_ddt1_dd09 0.933 0.575 0.426 0.498 1.69 1.34
rp2_ddt1_dd10 0.979 0.613 0.385 0.450 1.68 1.36
rp2_ddt2_dd03 0.722 0.403 0.572 1.12 3.05 1.22
rp2_ddt2_dd04 1.06 0.745 0.304 0.461 1.48 1.38
rp2_ddt2_dd05 1.24 0.921 0.145 0.213 0.717 1.46
rp2_ddt2_dd06 1.11 0.892 0.251 0.449 1.15 1.39
rp2_ddt2_dd07 0.848 0.494 0.478 0.798 3.36 1.29
rp2_ddt2_dd08 0.857 0.526 0.480 0.701 2.47 1.31
rp2_ddt2_dd09 0.751 0.403 0.561 0.944 3.19 1.26
rp2_ddt2_dd10 0.829 0.471 0.496 0.820 3.00 1.29
rp2_ddt3_dd03 0.655 0.343 0.584 1.62 4.90 1.16
rp2_ddt3_dd04 1.03 0.722 0.313 0.606 2.02 1.36
rp2_ddt3_dd05 1.21 0.892 0.172 0.238 0.949 1.45
rp2_ddt3_dd06 1.08 0.856 0.276 0.560 1.59 1.36
rp2_ddt3_dd07 0.739 0.391 0.544 1.18 5.66 1.22
rp2_ddt3_dd08 0.758 0.432 0.541 1.06 3.89 1.25
rp2_ddt3_dd09 0.726 0.380 0.572 1.07 3.84 1.24
rp2_ddt3_dd10 0.751 0.398 0.541 1.12 4.19 1.24
rp2_ddt4_dd03 0.654 0.343 0.581 1.65 5.00 1.16
rp2_ddt4_dd04 1.03 0.721 0.314 0.604 2.02 1.36
rp2_ddt4_dd05 1.21 0.892 0.172 0.238 0.986 1.45
rp2_ddt4_dd06 1.08 0.856 0.276 0.560 1.59 1.36
rp2_ddt4_dd07 0.739 0.391 0.544 1.18 5.69 1.22
rp2_ddt4_dd08 0.757 0.432 0.541 1.06 3.89 1.25
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Table A.1 | Continued.

Model
M(IGE)

M�
M(56Ni)

M�
M(IME)

M�
M(16O)

10−1 M�
M(12C)

10−3 M�

Ekin,a

1051 erg

rp2_ddt4_dd09 0.725 0.380 0.570 1.08 4.43 1.24
rp2_ddt4_dd10 0.754 0.401 0.538 1.11 4.41 1.24

rp1_ddt1_dd07_Z� 1.00 0.734 0.349 0.446 1.84 1.40
rp1_ddt1_dd07_0.5Z� 1.00 0.752 0.352 0.440 1.87
rp1_ddt1_dd07_2Z� 1.01 0.699 0.340 0.455 1.79
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Zusammenfassung

In der vorliegenden Diplomarbeit wurde der Einfluss der Zusammensetzung des Weißen
Zwerges als Vorläufersystem auf thermonukleare Supernovae untersucht.

Supernovae sind variable astronomische Erscheinungen, die als solche die Menschheit
schon sehr lange faszinieren. Sie stellen die hellsten Ereignisse im Universum dar und
können auf dem Maximum ihrer Helligkeit ihre komplette Heimatgalaxie überstrahlen.
Mit dem Aufkommen besserer Teleskope und Spektrographen im 20. Jahrhundert war
es möglich, Supernovae von Novae zu unterscheiden und anhand ihrer optischen
Eigenschaften in Unterkategorien einzuteilen. Die für diese Arbeit relevanten Typ Ia
Supernovae zeigen keine Spuren von Wasserstoff oder Helium im Spektrum, dafür
aber eine ausgeprägte Silizium-Linie. Die meisten Objekte dieser Kategorie werden
durch thermonukleare Explosionen Weißer Zwerge, die aus Kohlenstoff und Sauerstoff
bestehen, ausgelöst. Die Energie wird dabei durch die nuklearen Reaktionen von C
und O zu Eisengruppenelementen, hauptsächlich 56Ni, geliefert. Die γ-Quanten, die
beim anschließenden Zerfall des 56Ni und des Tochterkerns 56Co entstehen, sind für die
Helligkeit der Supernova verantwortlich. Auf dem Weg durch die Explosionsprodukte
werden diese γ-Quanten mehrfach absorbiert und wieder emittiert, wodurch dann das
beobachtete Spektrum zustande kommt.

Ziele

Ziel dieser Diplomarbeit ist es, die numerische Modellierung dieser Explosionsphase
zu verbessern, indem verschiedene Kompositionen der Vorläufersysteme in Betracht
gezogen werden. Die Motivation für diese Verbesserung ist zum Einen eine genauere Mo-
dellierung, da Sternentwicklungsmodelle Vorläufersysteme mit variabler Komposition
und einem Kern mit geringerem Massenanteil von Kohlenstoff voraussagen, wobei dieser
Anteil von der Entwicklung des Vorläufersterns abhängt. Bisherige Modellierungen von
verzögerten Detonationen von Weißen Zwergen nahe der Chandrasekhar-Masse mit
denselben numerischen Methoden legten als Anfangsmodell eine homogene Zusammen-
setzung mit einem Massenanteil von Kohlenstoff von 0.5 zugrunde (z.B. Seitenzahl et al.,
2012).

Zum Anderen soll überprüft werden, ob die Modellierung anderer Anfangszusam-
mensetzungen in der Lage ist, Beobachtungen besser zu reproduzieren. Dazu müssen
synthetische Lichtkurven und Spektren aus Strahlungstransportrechnungen mit Beob-
achtungen verglichen werden. Außerdem soll untersucht werden, ob die auftretende
Variabilität in der chemischen Zusammensetzung die variablen Helligkeiten normaler
Typ Ia Supernovae erklären kann.

101



Zusammenfassung

Grundlagen

Ein Weißer Zwerg stellt das Endstadium von Sternen mit Massen . 8 M� dar. Diese
Masse reicht nicht aus, um den Stern so stark zu kontrahieren, dass die nächste Stufe
nuklearen Brennens nach Wasserstoff- und Heliumbrennen im Innern einsetzt. Da Weiße
Zwerge nun durch den Entartungsdruck der Elektronen stabilisiert werden, sind sie
in Einzelsternsystemen stabile Objekte. In einem Binärsternsystem hingegen kann der
Begleitstern Materie auf den Weißen Zwerg transferieren, was zu einem Anwachsen der
Masse des Weißen Zwerges bis zur Chandrasekhar-Masse führen kann. Trotz der intensi-
ven Forschung auf diesem Gebiet steht noch nicht fest, wie genau das Vorläufersystem
beschaffen ist, d.h. welcher Art der Begleitstern ist und wie genau die Explosion abläuft.
Verschiedene Möglichkeiten werden diskutiert, so etwa verzögerte Detonationen von
Weißen Zwergen nahe der Chandrasekhar-Masse, doppelte Detonationen von Weißen
Zwergen weit unterhalb der Chandrasekhar-Masse und gewaltsame Verschmelzungen
von zwei Weißen Zwergen.

Der Weiße Zwerg besteht aus einem Plasma aus Atomkernen, die einer Maxwell-
Boltzmann-Verteilung folgen, und Elektronen, die in verschiedenem Grade entartet
und relativistisch sind. Der Gravitationsdruck der Materie wird durch den Entartungs-
druck der Elektronen ausgeglichen. Erreicht der Weiße Zwerg durch Massenakkretion
jedoch die kritische Chandrasekhar-Masse, wird er instabil und durch eine thermische
Instabilität kann eine thermonukleare Flamme entstehen.

Es gibt generell zwei Propagationsarten thermonuklearer Flammen, ähnlich zu che-
mischen Flammen: Deflagrationen und Detonationen. Deflagrationen breiten sich mit
Unterschallgeschwindigkeit aus und werden durch Wärmeleitung von der heißen Asche
in den Brennstoff angetrieben. Detonationen hingegen breiten sich mit Überschallge-
schwindigkeit aus und werden durch die Kompression einer führenden Schockwelle
getrieben. In der Schockwelle wird die Materie komprimiert und dadurch über die
Schwelle erhitzt, bei der thermonukleare Reaktionen einsetzen. Deren Energiefreiset-
zung wiederum treibt den Schock an. Diese beiden Flammenarten unterscheiden sich
außerdem in ihren Brennprodukten in Abhängigkeit von der Dichte.

In der vorliegenden Arbeit werden die verzögerten Detonationen von Weißen Zwergen
genauer untersucht. In diesem Szenario beginnt die thermonukleare Explosion mit einer
Deflagration, die nahe des Zentrums gezündet wird. Durch die hydrodynamische
Rayleigh-Taylor-Instabilität wird das Voranschreiten der Flammenfront beschleunigt
und es entsteht eine turbulente Flamme, die eine verwinkelte, fraktal-ähnliche Struktur
aufweist. Nach einer gewissen Zeit ändern sich die Eigenschaften der Flamme und
das Einsetzen einer Detonation wird möglich, die den Rest des Sternes verbrennt. Die
Reaktionsprodukte der Flammen hängt von der Dichte der unverbrannten Materie vor
der Flammenfront ab, bei hohen Dichten werden Eisengruppenelemente erzeugt, bei
niedrigeren Dichten herrscht Brennen zu Elementen mittlerer Masse vor. Da sich durch
die Deflagration, die sich mit Unterschallgeschwindigkeit fortpflanzt, der Weiße Zwerg
ausdehnt, sinkt die Dichte und die anschließende Detonation verbrennt weniger Materie
zu Eisengruppenelementen. Dieses Szenario ist in der Lage, die aus Beobachtungen
abgeleiteten 56Ni-Massen von etwa 0.6 M� zu reproduzieren.
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Modellierung

Die thermonukleare Explosion wird mit Hilfe von hydrodynamischen Simulationen
untersucht. Hierbei wird das Plasma des Weißen Zwergs als Kontinuum angenommen,
sodass die Euler-Gleichungen der Hydrodynamik angewandt werden können. Diese
werden auf einem numerischen Gitter mit der Methode der Finiten Volumen diskretisiert.
Diese hat den Vorteil, Erhaltungsgrößen – wie etwa Masse, Impuls und Energie – durch
die numerische Implementation exakt zu erhalten.

Da die direkte Implementierung der nuklearen Reaktionen aufgrund der unterschied-
lichen Zeitskalen sehr rechenzeitaufwändig ist, wird ein vereinfachtes Verfahren benutzt:
die „level set“-Methode. In dieser Methode wird die Flammenfront als Isofläche des
Nullwerts einer Distanzfunktion dargestellt, wobei die Reaktionsprodukte instantan
direkt hinter der Flammenfront erzeugt werden. Dies ist vor allem für Detonationen
bei hohen Dichten und für Deflagrationen im Allgemeinen eine sehr gute Näherung,
da die Flammendicken um viele Größenordnungen unter der Auflösung des Gitters
liegen. Die Werte für die Zusammensetzung der Reaktionsprodukte hängen von der
Zusammensetzung und der Dichte des unverbrannten Materials ab und werden einer
Tabelle entnommen, die vor den eigentlichen Simulationen erstellt werden muss. Diese
Tabelle wurde mit Hilfe einer iterativen Kalibrierungsmethode separat für Detonationen
und Deflagrationen erstellt.

Um dennoch detaillierte Informationen über die Zusammensetzung der Explosions-
produkte zu erhalten, werden sogenannte „Tracerteilchen“ eingesetzt, welche passiv mit
dem hydrodynamischen Fluss advektiert werden. Da dies dem Lagrange-Bezugssystem
entspricht, hängt die chemische Zusammensetzung nur von der thermodynamischen
Trajektorie (Dichte, Temperatur) ab und kann in einem separaten Schritt, dem Postpro-
zessieren, berechnet werden.

In der iterative Kalibrierung der Tabellen für die Energiefreisetzung werden abwech-
selnd hydrodynamische Simulationen und Postprozessierungsschritte durchgeführt,
wobei die Ergebnisse des Postprozessierens zur Berechnung einer neuen Tabelle für die
nächste Iteration benutzt werden.

Ergebnisse

Die iterative Kalibrierung der Tabellen für die „level set“-Methode wurde für Deflagra-
tionen und Detonationen bei verschiedene Anfangszusammensetzungen durchgeführt.
Hierdurch können auch Modelle mit variierender Anfangszusammensetzung, die durch
den Massenanteil des Kohlenstoffs charakterisiert sind, behandelt werden. Die Tabellen
zeigen zwei charakteristische Eigenschaften in Abhängigkeit von der Anfangszusammen-
setzung: Einerseits ist die totale Energiefreisetzung niedriger für geringere Kohlenstoffan-
teile, was durch die geringere Differenz der Bindungsenergien zu den Produkten des
Brennens, also hauptsächich Eisengruppenelementen mit hoher Bindungsenergie, erklärt
werden kann. Zum Anderen verschieben sich die Übergänge in die einzelnen Brennpha-
sen (C-, O-, Si-Brennen) zu höheren Dichten für niedrigere Kohlenstoffmassenanteile.
Zusammen führen diese beiden Effekte dazu, dass die Brennfronten – Deflagrationen
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und Detonationen – für geringere Massenanteile des Kohlenstoffs systematisch weniger
nukleare Energie freisetzen.

Die Tabellen aus dem Kalibrierungsverfahren wurden nun benutzt, um zwei- und
dreidimensionale Simulationen von verzögerten Detonationen für verschiedene Anfangs-
kompositionen – homogen und variabel – durchzuführen. Ein wesentlicher Effekt ist die
geringere Produktion von 56Ni für geringere Kohlenstoffanteile bei gleichen Zündkonfi-
gurationen. Die geringere Energiefreisetzung führt zu einer schwächeren Entwicklung
der Deflagration mit geringeren turbulenten Geschwindigkeitsfeldern. Dadurch wird die
Detonation erst bei niedrigeren Dichten gezündet und produziert daher weniger 56Ni.
Insgesamt ergibt sich durch die veränderte Entwicklung eine geringere Gesamtmasse
von 56Ni. Daraus lässt sich schließen, dass variable Anfangszusammensetzungen, die von
den Sternentwicklungsmodellen je nach Vorläuferstern vorhergesagt werden, auch zu
einer Variabilität in der produzierten 56Ni-Masse und somit der Helligkeit der Supernova
führt. Dies bedeutet, dass die Verschiedenheit der Typ Ia Supernovae in der Helligkeit
zumindest teilweise durch Variationen der Anfangszusammensetzung erklärt werden
kann.

Um die Ergebnisse der Simulationen mit Beobachtungen zu vergleichen, wurden
für drei 2D-Modelle Strahlungstransport-Rechnungen von M. Kromer1 durchgeführt.
Berechnungen des Strahlungstransportes simulieren die Propagation sowie Absorptions-
und Emissionsprozesse von Photonenpakten. Sie liefern synthetische Lichtkurven und
Spektren, die mit beobachteten Supernovae verglichen werden können. Der Aufbau der
Lichtkurven und Spektren basiert dabei auf der Struktur der Explosionsprodukte im
Geschwindigkeitsraum. Im Groben sind alle Modelle im Geschwindigkeitsraum ähnlich
aufgebaut; sie zeigen eine geschichtete Struktur mit einem Kern aus 56Ni und stabilen
Eisengruppenelementen, der von äußeren Hüllen aus Elementen mittlerer Masse (v.a. Si)
und unverbranntem Material (O, C) umgeben ist. Allerdings hängt die Geschwindigkeit,
bei der die einzelnen Schichten auftreten, von der Anfangszusammensetzung ab. Da die
freigesetzte Energie abzüglich der anfänglichen Gravitationsenergie in die kinetische
Energie der expandierenden Hülle umgewandelt wird, hängen die Geschwindigkeiten
der einzelnen Schichten von der gesamten Energie ab, die für geringere C-Massenanteile
kleiner ist. Dies führt dazu, dass die Geschwindigkeit des Si, die ein dominantes Merkmal
im Spektrum bestimmt, von der Anfangszusammensetzung abhängt.

Die berechneten Lichtkurven und Spektren wurden mit beobachteten Supernovae
verglichen. Dabei zeigt sich, dass die absoluten Helligkeiten und Anstiegszeiten mit
normalen Supernovae vergleichbar sind. Die Lichtkurven der berechneten Spektra
weisen allerdings einen Überschuss in roten Bändern auf. Im blauen B-Band stimmt
die Lichtkurve um das Maximum relativ gut mit Beobachtungen überein. Im V-Band
hingegen, bei größeren Wellenlängen, ist am Maximum die Helligkeit der berechneten
Modelle zu hoch. Die Ursache hierfür liegt wahrscheinlich in den vergleichsweise hohen
Geschwindigkeiten der Eisengruppenelemente. Da die Eisengruppenelemente über dem
Teil des Kerns liegen, in dem die Strahlung ausgesandt wird, können sie Strahlung aus
dem blauen Bereich absorbieren und im roten Bereich wieder emittieren. Man sollte

1Max-Planck-Institut für Astrophysik, Garching
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allerdings auch beachten, dass die drei Modelle im Vergleich zur beobachteten Supernova
eine höhere gesamte 56Ni-Masse aufweisen. Für die 3D-Modelle sollte die Rötung der
Lichtkurven schwächer sein, da hier geringere Geschwindigkeiten für den inneren Kern
aus Nickel und Eisengruppenelementen auftreten. Die synthetischen Spektren zeigen
ebenfalls einen zu hohen Fluss im roten Bereich, können aber sonst die Hauptmerkmale
des beobachteten Spektrums reproduzieren. Speziell die Si II-Absorptionslinie verschiebt
sich zu niedrigeren Geschwindigkeiten und daher höheren Wellenlängen für einen
geringeren Kohlenstoffmassenanteil und damit zu einer besseren Übereinstimmung mit
dem beobachteten Spektrum.

Insgesamt lässt sich sagen, dass die realistischere Modellierung der Anfangszusam-
mensetzung zu einer besseren Übereinstimmung mit der beobachteten Supernova führt
als die bisher benutzten, generischen Annahmen.

Ausblick

Um realistischere Vergleiche mit beobachteten Spektren zu erhalten, müssen noch mehr
3D-Modelle mit anschließendem Strahlungstransport berechnet werden. Dies wird es
auch erlauben, Effekte bezüglich der Beobachtungsrichtung zu betrachten.

Darüber hinaus können die in dieser Arbeit erhaltenen Tabellen auch benutzt werden,
um den Effekt unterschiedlicher Anfangszusammensetzungen auf andere Modelle zu
untersuchen, wie etwa das Szenario der doppelten Detonation von Weißen Zwergen
unterhalb der Chandrasekhar-Masse oder das Szenario der gewaltsamen Verschmelzung
zweier Weißer Zwerge.
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