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Outline of the first lecture



Euler equations of compressible gas dynamics:

(ρu)t + (ρu
2 + p)x = 0
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ρt + (ρu)x = 0 conservation of mass

conservation of momentum

conservation of total energy

closure relationship - equation of state: polytropic gas

Here is a typical example of a system of PDEs we want to numerically discretise:



a planar shock wave in a gas hitting three cylinders 

t = 0



Given smooth initial data for such equations, the solution will evolve into something not smooth.
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In order to study the numerical discretization of such equations we first study simpler equations.



Linear advection equation



Numerical methods use space- and time discretization:

t

x

the state of the gas 
is given initially

t = 0
we then need to 

determine it at later 
times.

∆x = h

∆t = k

xi

tn

xi+1xi−1



Finite difference method



Finite volume method



Convergence



Local truncation error τ



Consistency

If

But:



Consistency + Stability = Convergence

Fundamental therom:



Lax-Richtmyer stabilty



Stability of upwind



Upwind as interpolation



The CFL Condition

not sufficient



Numerical domain of dependence



The CFL Condition



CFL ConditionStencil

Lax-Wendroff



Hyperbolic systems



3 equations with λ1 < 0 < λ2 < λ3

domain of dependence range of infuence



CFL ConditionStencil



Upwind for a linear system



Symmetric methods

unstable



Numerical dissipation
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Lax-Friedrichs Lax-Friedrichs

qt + qx = 0 with periodic boundary conditions

initial conditions
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Lax-Wendroff



Modified equations



Modified Equation for Lax-Wendroff
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Dispersion relation



Dispersive behavior
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Outline



Qn
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q(x, tn)dx

qt + f(q)x = 0
Finite volume method



Finite volume method



Godunov’s method for advection



Godunov’s method



First order REA Algorithm



First order REA Algorithm



Cell update



Second-order REA Algorithm

linear



Second-order REA Algorithm



Choice of slopes



Oscillations



High-resolution methods



Minmod  slope



Piecewise linear reconstruction



TVD Methods



TVD REA Algorithm

TV (q̃n) ≤ TV (Qn).with the property that

linear

Note:



Some popular limiters
θj =

Uj − Uj−1

Uj+1 − Uj



6.9 Slope-Limiter Methods 111

6.9 Slope-Limiter Methods

We now return to the derivation of numerical methods based on piecewise linear reconstruc-
tion, and consider how to limit the slopes so that (6.23) is satisfied. Note that setting σ n

i ≡ 0
works, since the piecewise constant function has the same TV as the discrete data. Hence
the first-order upwind method is TVD for the advection equation. The upwind method may
smear solutions but cannot introduce oscillations.

One choice of slope that gives second-order accuracy for smooth solutions while still
satisfying the TVD property is the minmod slope

σ n
i = minmod

(
Qn

i − Qn
i−1

"x
,

Qn
i+1 − Qn

i

"x

)
, (6.26)

where the minmod function of two arguments is defined by

minmod(a, b) =

⎧
⎪⎨

⎪⎩

a if |a| < |b| and ab > 0,

b if |b| < |a| and ab > 0,

0 if ab ≤ 0.

(6.27)

If a and b have the same sign, then this selects the one that is smaller in modulus, else it
returns zero.

Rather than defining the slope on the i th cell by always using the downwind difference
(which would give the Lax–Wendroff method), or by always using the upwind difference
(which would give the Beam–Warming method), the minmod method compares the two
slopes and chooses the one that is smaller in magnitude. If the two slopes have different
sign, then the value Qn

i must be a local maximum or minimum, and it is easy to check in
this case that we must set σ n

i = 0 in order to satisfy (6.23).
Figure 6.2(a) shows results using the minmod method for the advection problem con-

sidered previously. We see that the minmod method does a fairly good job of maintaining
good accuracy in the smooth hump and also sharp discontinuities in the square wave, with
no oscillations.

Sharper resolution of discontinuities can be achieved with other limiters that do not
reduce the slope as severely as minmod near a discontinuity. Figure 6.5(a) shows some
sample data representing a discontinuity smeared over two cells, along with the minmod
slopes. Figure 6.5(b) shows that we can increase the slopes in these two cells to twice the
value of the minmod slopes and still have (6.23) satisfied. This sharper reconstruction will
lead to sharper resolution of the discontinuity in the next time step than we would obtain
with the minmod slopes.

(a) (b)

Fig. 6.5. Grid values Qn and reconstructed q̃n(·, tn) using (a) minmod slopes, (b) superbee or MC
slopes. Note that these steeper slopes can be used and still have the TVD property.
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Piecewise linear reconstruction
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Slope limiters and flux limiters



Wave limiters



Extension to linear systems



Nonlinear scalar conservation laws

Upwind methods for u > 0.



Weak solutions depend on the conservation law



Conservation form



Importance of conservation form



nonconservative method

conservative method

Burgers' equation solved with an upwind method, to demonstrate that this does not 
approximate the weak solution properly.



Lax-Wendroff Theorem

Note:



Boundary conditions and ghost cells
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Acoustics equations
Zero initial condition.

28 2 Conservation Laws and Differential Equations

and since p0 = P(ρ0), we obtain

p̃ ≈ P ′(ρ0)ρ̃.

Also we have

ρu = (ρ0 + ρ̃)(u0 + ũ) = ρ0u0 + ρ̃u0 + ρ0ũ + ρ̃ũ,

and so

ρ̃u ≈ u0ρ̃ + ρ0ũ.

Using these expressions in the equations (2.47) and performing some manipulations
(Exercise 2.1) leads to the alternative form of the linear acoustics equations

p̃t + u0 p̃x + K0ũx = 0,

ρ0ũt + p̃x + ρ0u0ũx = 0,
(2.48)

where

K0 = ρ0 P ′(ρ0). (2.49)

The equations (2.48) can be written as a linear system
[

p
u

]

t

+
[

u0 K0

1/ρ0 u0

] [
p
u

]

x

= 0. (2.50)

Here and from now on we will generally drop the tilde on p and u and use

q(x, t) =
[

p(x, t)
u(x, t)

]

to denote the pressure and velocity perturbations in acoustics.
The system (2.50) can also be derived by first rewriting the conservation laws (2.38) as

a nonconservative set of equations for u and p, which is valid only for smooth solutions,
and then linearizing this system; see Exercise 2.2.

An important special case of these equations is obtained by setting u0 = 0, so that we
are linearizing about the motionless state. In this case the coefficient matrix A appearing in
the system (2.50) is

A =
[

0 K0

1/ρ0 0

]
(2.51)

and the equations reduce to

pt + K0ux = 0,

ρ0ut + px = 0.
(2.52)

In Section 2.12 we will see that essentially the same set of equations can be derived for
one-dimensional acoustics in an elastic solid. The parameter K0 is called the bulk modulus
of compressibility of the material; see Section 22.1.2 for more about this parameter.
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Using these expressions in the equations (2.47) and performing some manipulations
(Exercise 2.1) leads to the alternative form of the linear acoustics equations

p̃t + u0 p̃x + K0ũx = 0,
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(2.48)

where

K0 = ρ0 P ′(ρ0). (2.49)

The equations (2.48) can be written as a linear system
[

p
u

]

t

+
[

u0 K0

1/ρ0 u0

] [
p
u

]

x

= 0. (2.50)

Here and from now on we will generally drop the tilde on p and u and use

q(x, t) =
[

p(x, t)
u(x, t)

]

to denote the pressure and velocity perturbations in acoustics.
The system (2.50) can also be derived by first rewriting the conservation laws (2.38) as

a nonconservative set of equations for u and p, which is valid only for smooth solutions,
and then linearizing this system; see Exercise 2.2.

An important special case of these equations is obtained by setting u0 = 0, so that we
are linearizing about the motionless state. In this case the coefficient matrix A appearing in
the system (2.50) is

A =
[

0 K0

1/ρ0 0

]
(2.51)

and the equations reduce to

pt + K0ux = 0,

ρ0ut + px = 0.
(2.52)

In Section 2.12 we will see that essentially the same set of equations can be derived for
one-dimensional acoustics in an elastic solid. The parameter K0 is called the bulk modulus
of compressibility of the material; see Section 22.1.2 for more about this parameter.
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