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Outline of the first lecture

Finite difference vs. finite volume methods

Convergence

Local truncation error, consistency
Stability and the CFL condition
Upwind methods

Lax-Friedrichs, Lax-Wendroft

Diffusion, dispersion, modified equations



Here is a typical example of a system of PDEs we want to numerically discretise:

Euler equations of compressible gas dynamics:
Ot + (pu)m — () conservation of mass

(pu)s + (pu2 + p)r = 0  conservation of momentum

E, + (u(E i p))x — () conservation of total energy

closure relationship - equation of state: FE = » 1_? 7 | 2pu2 bolytropic gas




a planar shock wave in a gas hitting three cylinders




In order to study the numerical discretization of such equations we first study simpler equations.

Given smooth initial data for such equations, the solution will evolve into something not smooth.

u2

consider u=u(x,t) € R Burgers equation: u; + (5) =0
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Linear advection equation

g + ugy =0

True solution: ¢(x,t) = q(x — ut,0)

Assume u > 0 so flow 1s to the right.




Numerical methods use space- and time discretization:

L
A
- we then need to
the state of the gas determine it at later

is given initially times.



Finite difference method
Based on point-wise approximations:
Qi a2q(zi,tn), With 2z =1h, th=nk.
Approximate derivatives by finite differences.

Ex: Upwind methods for advection equation ¢; + ug, = 0:
n-+1 n il
QG -Qr (AP QR
k h

N .
+1 | , |
Q! = Qp — Ju(@) - Qi)

Stencil: ; |
N [ | . l

or




Finite volume method

Based on cell averages:

1 Lit1/2
e / g(z,t,)dr
£

h i—1/2
Update cell average by flux into and out of cell:
Ex: Upwind methods for advection equation g; + ug, = 0:

E(u@?_; — uQ?)

h
T ktl 71 Tt
Qi — }_(Qz — Q1)
]

+1 .
Qi = @

Q’I.l+1
t'71+l — 2 -
: o | B
Stencil: A 1=1/2 A i+1/2

Qi- Qi i+1



Convergence

Global error E* = Q7 — q(x3,tn)

We want: F at fixed (x,t) to approach O as k&, h — 0.
or ||QN —q(-,T)|| = 0as k, h = 0with Nk =T.
Method 1s order p (globally) 1f

E(k,h) = O+ h?) as k, h — 0.

Hard to deal with directly: more and more points as grid 1s refined

Study local error and stability.



L.ocal truncation error 7

Difference formula:

41 : : :
Qr-qQr (Q:-? - ) -

k ' h
Insert true solution into formula to determine LTE:

r(z,t) = gzt +k) —g(@t) | (‘1(""*’5) — q(r — h:l‘-))

k h

For smooth ¢ we can use Taylor series to expand:

T(z,t) = (q+kqy+--)+u(ge+ hgez+---)
— (qt T uq;p) T tht T h.q:m: ¢
= O(k+h)

Upwind 1s first order accurate (locally)



Consistency

A method 1s consistent if 7 — 0O as k&, h — 0.

The one-step error 1s k7

uk
h

kT = q(x,t + k) — (q(:z:, t) (g(x,t) — qlx — h, t))) .

An error of this magnitude is made in each of 7T'/k time steps.

This suggests E =~ (T'/k)(kT) = TT:
If 7= O(hP + kP) = global error is O(hP + kP)
The method 1s pth order accurate

But:
This 1s valid provided the method 1s stable!

Consistency + stablity = convergence



Fundamental therom:

Consistency + Stability = Convergence

ODE: zero-stability, stability on ¢'(¢) = 0 is enough.
Dahlquist Theorem.

Linear PDE: Lax-Richtmyer stability
Uniform power boundedness of a family of matrices
Lax equivalence Theorem.

Scalar conservation law: total variation stability

Systems of conservation laws: ?? — few convergence proofs



Lax-Richtmyer stabilty

Linear method: Q"+! = B,Q"  (with k/h fixed).

The method is Lax-Richtmyer stable in some norm || - || if, for
every time I’ > 0, there 1s a constant C'p such that

B || < Cr

forall k, N with Nk < T.

[t 1s sufficient to show that there 1s an « for which
Q™| < (1 + ak)||Q™]].

since then

1QN || < (14 ak)™||Q°| < e M||IQ°]] < e*']1Q°I-



Stability of upwind

The upwind method 1s stable 1n the 1-norm for 0 < v < 1,
where v = uk/h.

Qi = QF —v(Q} - QL))
= (1-v)Q!+vQ},

Note: convex combination 1f ) < v < 1

Ilcg'n.-HH] — }IZ‘Q:?-HI
= h Z (1 —v)Q: + v@:
< (1=v)h) |QF+vh) Q! ifo<v<I

R 1Q7 = 119"



Upwind as interpolation

q(zi, t'n,+1) = q(z; — uk, t'"-)

Trace back along characteristic,
interpolate between grid values

/.

Linear interpolation = q(z;,tp41) = vQ! { + (1 — v)QF

Note: Upwind is exact if uk/h = 1,

Qn-{—l N
7 M —1



The CFL Condition

Domain of dependence: The solution ¢( X, 7") depends on the data
q(x,0) over some set of x values, z € D(X,T).

Advection: ¢(X,T) = q(X —uT,0) and so D(X,T) = {X — uT}.

The CFL Condition: A numerical method can be convergent only 1f
its numerical domain of dependence contains the true domain of
dependence of the PDE. at least 1in the limit as £ and A go to zero.

Note: Necessary but not sufficient for stability!



Numerical domain of dependence

With a 3-point explicit method:

Lo o
* * .
fo e e e e e
Xj—2 X j Tj42
On a finer grid with £ /h fixed:
T4 | | L |
® o o




The CFL Condition

For the method to be stable, the numerical domain of dependence
must include the true domain of dependence.

For advection, the solution 1s constant along characteristics,
q(x,t) = q(x — ut,0)

For a 3-point method, CFL condition requires |%| < 1.

If this 1s violated:

1190900 ‘0000‘0 =11




Lax-VWendroff

Stencil

—

CFL Condition



Hyperbolic systems

qt + Agy =0

A1s m x m with eigenvalues A and eigenvectors r?,
ot p=1; 2 s MM

Let R be matrix of right eigenvectors and v = R g.
R'¢+R'ARR ¢, =0
Since R~'AR = A, this diagonalizes the system:
v; + Av, = 0.

This 1s a system of m decoupled advection equations

vy + APvP = 0.



3 equations with A1 <0 < Az < A3

(X, T)

X-XNT X -XT X = \T

domain of dependence

To + )\1t L0 )\Qt

L

range of infuence



Stencil

—

CFL Condition

APE
l

NPk
~Le

<0, Vp

-1<—<1, W



Upwind for a linear system

The one-sided method

Qi =QF - —A( Qi — Qi_1)

1s stable only if 0 < EAP/h < 1 for all p.
Upwind method based on sign of each \’:

Let A™ = max(\,0), A~ = min(A\,0),
AT = diag((AP)"), A~ = diag((A\P)7),
A+ = RA*R-!. A- = RA-R™!

Then

- | k | k N
P = G~ S AT — TR 1) —~ AT — )



Symmetric methods

Centered in space, forward in time:

| E /] - k& 1 . |
n+1 n n n il n
Q" = Qz_]_l(Q )(Q «1—1)—E<§A)(-i+1— Ji)
k
2h

Q mn
(!

A(Qz—H o (2 )

Centered approximation to ¢, but unstable for any fixed k/h.

Lax-Friedrichs:

1 k

nt+l _ =
Q-i+ _ 2(Q % QH—I) 2

A(Qiy1 — @i1)

This is stable if |2:%| < 1 for all p.




Numerical dissipation

Lax-Friedrichs:

—_ L e | k
Q.,:'Jrl = 5(( i1+ Q1) 2h.A( i1 — @i_1)

This can be rewritten as

k
2h

. ., 1, .
Qi =} A(Qiy1 — Qi—1) + §(Q§'f-1 —2Q; + Qi1)

[.ooks like the unstable method with the addition of an
approximation to 5h%qy,.

Approximates ¢; + Aqg, = €q.,. (modified equation)



Qt_I_Q:U:O

Lax-Friedrichs at t=1

0.2

0.4 0.6 / 0.8

initial conditions

with periodic boundary conditions

q Lax-Friedrichs att=5
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Lax-Wendroff

Second-order accuracy’’

Taylor series:

g(z,t + k) =q(x,t) + kqi(z,t) + 2]\ 2qu(z, t) + -

Fron] (If — _Aq:I; \Wie ﬁnd th — ./12(]:[;:,:.

Loz i
g(z,t + k) = q(z,t) — kAgz(z,t) + 51;-2,42(1;1:37(;5, t) 4 o0

Replace ¢, and q,, by centered ditferences:

k: 1 k?
2h A(Qiy1 — Qi) A 2 h?

Qn—l—l Qn AQ( % ]_2Q71+Q2+1)



Modified equations

The upwind method

k
—1U

Q?H == b Q5 — Qi1)-

gives a first-order accurate approximation to gy + ug, = 0.

But 1t gives a second-order approximation to

wh wk
qQt + UGy = 7 1 i rx-

This 1s an advection-diffusion equation.
Indicates that the numerical solution will diffuse.

Note: coefficient of diffusive term is O(h).



Modified Equation for Lax-Wendroff

The Lax-Wendroft method

1 k?

62.?—“ - 2;2 (Qz-}—l o Q?—l) i 9 2 A (( 1—1 QQ W L-‘-l)

gives a second-order accurate approximation to ¢; + uq, = 0.

But 1t gives a third-order approximation to

wh? uk\ 2
qt + U dr = G i T Qrzx-

This has a dispersive term with O(h?) coefficient.

Indicates that the numerical solution will become oscillatory.



Lax—Wendroff att = 1 Lax—Wendroff att=5




Dispersion relation
Consider a single Fourier mode:
a(x,0) = €4° = g(a,t) = 77
Determine w(&) based on the PDE. This is the dispersion relation.

gt = —iwq, qe=1£q, Quz=—E2q, Qezz=—1€3,...

g +uge =0 = w(§) = ué, q(z,t) = i€ (z—ut)
gt + UGy = €Qzy — q(aj, t) — (3—6521'(3’175(1‘—%)

gt + UGy = BQree = q(z,t) = @ (utBEN)



Dispersive behavior

qt 2 Uy = .*'3‘]:1::1::1: — (I(.’I:, f) = (37.‘5(33_(“/*‘;‘352)1‘.)

Dispersion relation: w(§) = ué + B€°.

Wavenumber £ propagates with phase velocity

Cp(€) = wff) — u + BE2.

Energy propagates with the group velocity

co(€) = W'(€) = u+ 3B¢°.



Upwind att=1 Upwind att =10
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Introduction to numerical methods to
hyperbolic PDE’s

Lecture 2: High resolution finite volume methods

download review o | |
from: http://www.mat.univie.ac.at/~obertsch/literatur/conservation_laws.pdf
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Outline

Finite volume methods
Godunov’s method
High-resolution methods, TVD methods

Slope limiters, flux limiters, wave limiters
Nonlinear problems, convergence to weak solutions

Conservation form. Lax-Wendroft theorem



Finite volume method

gt + f(q)z =0
‘ 0 [Ti+1/2
Integral form: a / Q(.'L', l’) dr = f(Q("Bi—l/‘L’: t)) o f(Q(wi-}-l/?a t))
Li-1/2

Integrate fromtp 0 Lpyp1 =

- - t ot
/ G / i) dE [ (@it /2:8)) — F@(@ip1/2,8))

1 1 | 18 1 tn+1

- /q(:z:,t,,.;-ﬂdw — g/q(x tn)dx — ; (Z/l fla(zipy/2,1)) —f(Q(iBi—I/?et))dt)

Numerical method: ntl _ on _ ¥ pn Fm Qr =+ [ g t)da
umerical method: Qi — Q'i — E( i+1/2 2-._1/2) T A N g\, tn

t—

] t'ﬂ-{-l
Numerical flux: £ /o R -}:/ flg(zi_q/2,t))dL.

tn



Finite volume method

Q;H-l Qn ( 2+1/2 Fn 1/2)

Advection equation: f(g) = ugq

1 tn-{-]
Fi_12 = E/ uq(z;_ 1/2; t)dt.
-
First order upwind:
Fi1p=u"Qi" 1 +u Qf

k
@t = - ( QT — Q1) +u (QF 1 — QF))-

where u™ = max(u,0), v~ = min(u,0).



Godunov’s method for advection

()!' defines a piecewise constant function

~T

§(z,tp) = Qi forz; 19 <z <Tiiy)

Discontinuities at cell interfaces = Riemann problems.

u > ()

—

u < ()
f=—
trrl-l
Wt -1/2
{
& i-1/2 Tit+1/2
"1 i—1

Qj




Godunov’s method
()i defines a piecewise constant function
q'(z,ty) = i for Ti—1/2 < T < Tjq1/2

Discontinuities at cell interfaces == Riemann problems.
Q?}-*-l

b,
I,/"'J' BN

o \/ \/ \/ \/

b ' . ‘ '

Q ;l.

(?""(flfz'-—l/Qs t) = qw(Qi—la Qi) fort >t,.

Tl 1 tn+1 | Tl n | n n
FiZ12 = E/, f(g"(Qi-1, Q7)) dt = f(q"(QF1, Q).



First order REA Algorithm

[. Reconstruct a piecewise constant function ¢"(x. t,,) defined
for all z, from the cell averages ('

Q" (w,t) = QF  forallz €C;

2. Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain ¢"(z,%,,.1) a time £ later.

3. Average this function over each grid cell to obtain new cell
averages

| s
Q=1 /C Bl i e,



First order REA Algorithm

Cell averages and piecewise constant reconstruction:

After evolution:

| I T




Cell update
\

L

N,

The cell average 1s modified by

ku - (Q_ — Q7F)
h

So we obtain the upwind method

ku

+1 _ n 2
QI = Q7 - ZH(@QF - Q).




Second-order REA Algorithm

. Reconstruct a piecewise linearfunction ¢"(x, t,,) defined for
all z, from the cell averages @)}'.

i"(@,tn) = QF +0f(a — ;) forallzeC;

. Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain ¢"(x.%,,+1) a time k later.

. Average this function over each grid cell to obtain new cell
averages

1

Q= /C (2, fnyi) d2.



Second-order REA Algorithm

Cell averages and piecewise linear reconstruction:

After evolution:




Choice of slopes

Q" (z,tn) = QF + oz — ;) for z;_1/2 < T < Tjy1/.

Applying REA algorithm gives:

ku ( 1 ku

Q! = QF - ZH(QF - Qiy) — 5= (h—uk) (o] — o)

Choice of slopes:

mn Tl

Centered slope: o' = - ":+12—} = (Fromm)
)
QF -
Upwind slope: o' = — } (Beam-Warming)
l
1
Downwind slope: o' = dip1 — @ (Lax-Wendroft)

: h



Oscillations

Any of these slope choices will give oscillations near
discontinuities.

Ex: Lax-Wendrolft:

[




High-resolution methods

Want to use slope where solution 1s smooth for “second-order™
accuracy.

Where solution 1s not smooth, adding slope corrections gives
oscillations.

Limit the slope based on the behavior of the solution.

| O — G2 |
g; = i1 i P’
l’ h :

® =1 = Lax-Wendroft.

¢ =0 = upwind.




Minmod slope

a if |a| < |b| and ab > 0
minmod(a,b) =< b if |b] < |a| and ab > 0
0 1if ab<0

Slope:
o; = minmod((Q; — Qi 1)/h, (Qir1 — @Qi)/h)
n
7-|—l 2 n
— f'
( h. ) ( l)
where
B
9;” o Q n
1+] Q

$(f) = minmod(#, 1)



Piecewise linear reconstruction

[Lax-Wendroff reconstruction:

Minmod reconstruction:




TVD Methods

Total variation:

IVAQ) = Z Qi — Qi-1]

For a function, TV (q) = [ |q.(x)| dz.

A method 1s Total Variation Diminishing (TVD) if
r[rV(Q‘n-%-l) S TV(Q“)

[f Q™ is monotone, then so is Q™1
No spurious oscillations generated.

Gives a form of stability useful for proving convergence,
also for nonlinear scalar conservation laws.



TVD REA Algorithm

|. Reconstruct a piecewise linearfunction ¢"(x, t,,) defined for
all z, from the cell averages ()}'.

7"(2,t) = QF + 0} (z — z;) forallz € C;

with the property that 1TV (¢") <TV(Q").

2. Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain ¢"(z, t,,..1) a time £ later.

3. Average this function over each grid cell to obtain new cell
averages

1

Q:l—H — };/C 671'(1?,t7,_+1)d;73.

Note: Steps 2 and 3 are always TVD.



Some popular limiters

Linear methods: ‘93‘

-

upwind :
[Lax-Wendroff :

Beam-Warming :

-

T D
e S
|

-
e R e B e Y
<
S
|
DO | = D = O

Fromm : ¢

Q
S
|

High-resolution limiters:

minmod : ¢(f#) = minmod(1, )
superbee :  ¢(0) = max(0, min(1,260), min(2,6))
MC: ¢(6) = max(0, min((1+6)/2, 2, 26))
0+ |0

van Leer : ¢(0) = N

Uj — Uj_l
Ujt1 = Uj




Piecewise linear reconstruction

Grid values Q" and reconstructed g"(-, t,,) using

minmod slopes superbee or MC slopes




Regions in which
function values ¢(6)must
lie in order to give TVD
@ Beam-Warming @) T rrRe— and second order TVD

al! methods in this Pt methods.
diagram leave the

TVD region

Sweby diagram

IJ
IJ

WD Lax-Wendroff | TVD & 2nd order

(o
D

(3
D

Superbee ? MC

IJ

TVD & 2nd order TVD & 2nd order



Order of accuracy isn’t everything

Comparison of Lax-Wendroff and a high-resolution method on
linear advection equation with smooth data.

The high-resolution method is not formally second-order
accurate, but 1s more accurate on realistic grids.

Crossover 1n the max-norm 1s at 2800 grid points.

max-normerrors att=2 1-normerrors att=2

0 — 10 — e
— _ax-Wengroff |; E — L ax-Wengroff
== MC-limiter | ' = =+ MC-limiter

0 N 3 1
10
. O ! E_
10':':
0 —3‘ 10,;

10~ 10 10~ 107 10° 107



monotone . .
: Upwind algorithm
convection |
q{1) attmet=0

1.5 | | | 1 1 1 | | |
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Lax-Wendroff

q{1) attmet=0

0.1
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0.8

0.9




1.2

slope limited, MC limiter

q{1) attimet=0

1 ! | 1 ! ! |

0.1

0.2 0.3 0.4 0.5 0.B 0.7 0.8

0.9




Wave packet: Upwind algorithm

q{1) attimet=0
1.5 1 | | | | | 1 | |




LaX-Wendroff

qf1) attimet=
15 1 1 1 1 1 1 1 1 1
1 - -
¢
i




slope limited, Superbee limiter

q{1) attmet=0
1.5 1 1 | 1 | 1 1 | 1




Slope limiters and flux limiters

Slope limiter formulation for advection:
Q" (z,tn) = QF + o™z — ;) for z;_1/2 < T < Tjy1/2.
Applying REA algorithm gives:

kuu 1 ku

Qi =Qf - —(@QF - Q) - 57

(h — uk) (07" — 07_4)

Flux limiter formulation:

| AXE
n—+1 1) n n
Q'i e Qi A,l,( i+1/2 T Fi—l/2)

with flux

| |
Fi”1/2 = uQi_y + Fulh — uk)oy_;.



Wave limiters

LC[WQ I/Q—Qn ’l 1°

Upwind: Q! = QI — 3W,_ys.
[Lax-Wendroff:

n 7 ku K, - r;
Qpe= Y ; Wi qgm= i_z(F’“/Z — P 1y9)

X 1 ku
F?j_l/g = 5 (] = T ) |U|Wz—1/2

High-resolution method:

. | ku —~
Fi 172 = 5 (1 — |7 ) uWi_1/2

where Wi_l/g = Q;_1/9Wi_1/9.



Extension to linear systems

Approach 1: Diagonalize the system to

vy + Av, =0

Apply scalar algorithm to each component.

Approach 2:

Solve the linear Riemann problem to decompose ) — QI' ; into
waves.

Apply a wave limiter to each wave.

These are equivalent.



Nonlinear scalar conservation laws

S S 1,2\ _
Burgers’ equation: u; + (3u®) = 0.
Quasilinear form: wu; + wu, = 0.

These are equivalent for smooth solutions, not for shocks!

Upwind methods for u > 0.

Conservative: Ui = U — 57 (3((UF)* - (UL1)%))

[/ A

13 g+l _ g Atrmrn .
Quasilinear: U7 = U — - UMU® = UM, ).

Ok for smooth solutions. not for shocks!



Weak solutions depend on the conservation law

The conservation laws

and
2 . |
(uQ){ + (;—u‘;> =
both have the same quasilinear form
Uy + utty = ()

but have different weak solutions.

different shock speeds!



Conservation form

The method

At
n-+1 7 n n

1S 1n conservation form.

The total mass 1s conserved up to fluxes at the boundaries:

T T At ,
Azx Z Qi'Jrl = A:IJZ Q) AT(F_,_oC — F_»).
i : T

Note: an 1solated shock must travel at the right speed!



Importance of conservation form

Solution to Burgers™ equation using conservative upwind:

Solution to Burgers™ equation using quasilinear upwind:




Burgers' equation solved with an upwind method, to demonstrate that this does not
approximate the weak solution properly.

g(1) attimet=0
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Lax-Wendroff Theorem

Suppose the method 1s conservative and consistent with
g+ f(q)z =0,

Fi 10 = F(Qi-1,Qi) with F(q,q) = f(q)
and Lipschitz continuity of F.

If a sequence of discrete approximations converge to a function
g(x,t) as the grid is refined, then this function is a weak solution
of the conservation law.

Note:

Does not guarantee a sequence converges
Two sequences might converge to different weak solutions.

Also need stability and entropy condition.



Boundary conditions and ghost cells

In each time step, the data in cells 1 to NV 1s used to define ghost
cell values 1n cells outside the physical domain.

The wave-propagation algorithm 1s then applied on the expanded
computational domain.

| Q—-]I QO Ql | QQ | | (J‘.\: Q‘.\r.{l_l QNTQ
l l | l I | l
L1/2 TN4+1/2
I — ad T = b

The data 1s extended depending on the physical boundary
conditons.



Sample boundary conditions

Q—lI Qo Qll QQI | QN Q..\'T-[lQ..\'ITz

.’171/2 ;174,\"-{-]/2
Ir = a S
Periodic:
n _ An n ___ n n N
Q—l — YN-1; QO _ QN= QN+1 — %] QN+2 —

Extrapolation (outflow):
n __ n n ___ n n YY) n Y
Q—l — YWl QO S QN-H — QN? QN+2 — QN
Solid wall:

For (g : 0 ="D1; U = —uq,
For Q)1 : p—1 = pa2, U_1] = —U.
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Acoustics eq uations + 1 = Computed with 400 grid points and the MC limiter.
LU ¢ _ / PO Uo [ LU _ X Zero initial condition.
P attimet=0
2 | 1 1 1 | 1 1 1 1
1 — -
. reflectin
inflow ’ S
boundary
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sinusoidal 2 : : : : ; : : : ;
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2 | I | | | 1 I 1 I
"l — -
. reflectin
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boundary
—1F -
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Advection equation

q{1) attimet=0

2 I 1 I 1 I 1 I 1 1

T =

DEOCOCCCOO00VOVO0OOOOCCCOO00VVO0OOOOOCCCOI0VVVO000OCEH
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enters here _15k g
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Zero initial
condition.

outflow
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boundary
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boundary
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A standing wave in a closed tube with solid wall boundary conditions.

q{1) attimet=0

_' 1 1 1 1 1 1 1 1 1
reflecting
boundary
~1 | | | | | | | | |
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qf2) attmet=0
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0 reflecting
boundary
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