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1. Step size dilemma (P)

As seen in the first problem of problem set 2, the accuracy of the outcome is not on-
ly determined by the truncation error of the finite difference (FD) method, but also by
roundoff errors. There are two sources of roundoff errors we will consider here: cancel-
lation errors and condition errors.
A cancellation error occurs when two nearly equal numbers are subtracted because of
their finite representation. The error can be estimated by assuming that the error occurs
in the least significant digit,

|(a− b)true − (a− b)| ≤ δ max(|a|, |b|). (1)

δ is the precision of the representation, which is given by δ = 2−53 for usual double
precision representations on computers.
A condition error occurs when the given function f (x) is only known to a certain pre-
cision. Elementary operations and functions (such as trigonometric functions etc.) are
accurate to machine precision, but a function using an integration or iterative compu-
tation may only be accurate to a certain error ε. Then, all digits below this threshold are
affected and we can estimate the error as

| f (x)true − f (x)| ≤ ε| f (x)|. (2)

For elementary functions, ε = 2−53 is the machine precision for usual double precision
numbers.
Now consider the forward FD scheme for the first derivative,

FD(1)
1 (x, h) =

f (x + h)− f (x)
h

+ O(h), (3)

which is based on the Taylor expansion of f (x + h),

f ′(x) =
f (x + h)− f (x)

h
+

f ′′(ξ)
2

h, (4)

where ξ is between x and x + h.

a) Compute an upper bound for the total error for this method, which consists of can-
cellation and condition errors, as well as the truncation error. Sketch this as a functi-
on of h.

Hint: For the roundoff errors, find an upper bound for |FDtrue− FD|. The truncation
error comes from the last term in the Taylor expansion.
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b) A general nth order FD scheme for the dth derivative can be written as

FD(d)
n (x, h) =

∆ f (d)n (x, h)
hd + O(hn), (5)

where ∆ f (d)n is given by a certain combination of function evaluations at different
points. Using the true derivative, f (d)true = FDtrue +Ctruehn, the total error can be boun-
ded by

| f (d)true − FD| = |FDtrue − FD + Ctruehn| (6)
≤ |FDtrue − FD|+ |Ctrue|hn (7)

≤ ε|Fε|+ δ|Fδ|
hd + |Cn|hn, (8)

where the exact form of Fε, Fδ, and Cn depends on the FD method.

Compute the optimum step size hopt which minimizes this error expression.

Hint: Assume Fε, Fδ, and Cn to be independent of h for h→ 0.

c) Compute Fε, Fδ, and Cn for the forward and central FD schemes for the first deriva-
tive. Use these to get an expression for the optimum step size for both schemes.

d) Compute the optimum step size for problem 1 from problem set 2 ( f (x) = exp(x) at
x = 0) for the forward, backward and central schemes. Compare this to the plot you
made for the error.

2. Von Neumann stability analysis (P)

Consider the centered method

Qn+1
j = Qn

j −
∆t

2∆x
a
(

Qn
j+1 −Qn

j−1

)
for the linear advection equation ut + a ux = 0. Use von Neumann analysis to show that
this method is unstable for fixed ∆t

∆x .
Hint: As the equation is linear, you can analyze the behaviour of one Fourier component
Q̂n(ξ) = exp(−iξ j∆x)Qn

j .

Exercises marked with (P) have to be presented in the exercise, those mar-
ked with (H) have to be handed in. Programs can be sent per e-mail to
sohlmann@astro.uni-wuerzburg.de.
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